FIRST-ORDER HOMOGENIZATION
RICCARDO CRISTOFERI AND LORENZA D’ELIA

ABSTRACT. We provide a first-order homogenization result for quadratic functionals. In particular, we
identify the scaling of the energy and the explicit form of the limiting functional in terms of the first-
order correctors. The main novelty of the paper is the use of the dual correspondence between quadratic
functionals and PDEs, combined with a refinement of the classical Riemann-Lebesgue Lemma.

1. INTRODUCTION

First-order homogenization does not exist. The non-existence has its roots in two types of boundary
effects. The first one arises when the domain is not a disjoint union of suitable rescaled copies of the
periodicity cell (see [12, Example 1.12]). The second comes from the oscillatory nature of correctors in
the homogenization theory (see [2, Equation (2.12)]). Nevertheless, in this manuscript, we will provide
a first-order I'-convergence result for quadratic energies under suitable assumptions which allow us to
‘forget’ about the boundary. In particular, the scaling and the principal part of the energy in the bulk
will be identified.

Nowadays, homogenization is a very well-established mathematical theory describing how the mi-
crostructure affects the overall behavior of a material (see, e.g., [8, 10]). The mathematical literature on
the topic is too vast for an exhaustive list, and thus we limit ourselves to mention here some examples
where it has been successfully applied: from thin structures (see, for instance, [6, 11, 14, 29]), to phase
separation (see, for instance, [16, 17, 18]), and from micromagnetism (see [3, 15, 20, 21]) to supremal
functionals (see [13, 22]).

The prototypical example is a family of functionals F. : LP(; RM) — RU{+oc}, for p € (1, 00), with
€ > 0 being the length scale characterizing the fine structure, of the form

E : Lpro. M
) /QW<E,Vu(x)) dze if ue WHP(Q;RM),

+00 else.

The first variable of the energy density W accounts for the presence of a periodic microstructure, which
is reflected in requiring that W(-,¢) is a periodic function. The variational investigation of the periodic
homogenization goes back to the end of Seventies. In [26], the limiting functional Fjom of F. has been
fully characterized in the scalar case, i.e. M = 1, and under the assumptions of convexity and of p-growth
of W(z,-). The I-limit Fyom : LP(Q) — RU {400} is given by

) — /QWhom (vu(if)) de ifue ‘/Vol’p(Q)7

]:hom(u . (11)

400 else,

with the effective energy density Wyom : R™Y — R being characterized through the so-called cell formula

Whom (€) = inf{ W (y, €+ Vu(z)) : u e WP([0, 1)N)} . (1.2)

o,H~

Removing the assumption of convexity and in the vectorial framework, the analysis of the I'-limit has been
carried out independently in [9] and [27]. In this case, the limiting energy Fiom : LP(Q; RM) — RU{+oco}

2020 Mathematics Subject Classification. 35B27, 41A60, 49J45.
Key words and phrases. first-order homogenization, periodic homogenization, I'-convergence expansion, quadratic form.

1



2 RICCARDO CRISTOFERI AND LORENZA D’ELIA

is again of the form (1.1) but the homogenized energy density Wyom : RM*N — R is characterized by

the asymptotic cell formula
1
Whom(Z) = lim — inf {/ W(y,Z2+ Vu(z)) :u € W&’p([O,k)N;RM)} _ (1.3)
[0,k)N

It is worth noticing that in the scalar setting and assuming the convexity of W in the second variable,
formula (1.3) turns into (1.2) (see [27, Lemma 4.1]).

The aim of the present paper is to undertake a first-order analysis of a suitable version functional F,
via I-convergence. We focus on quadratic energies F. : L?(Q) — R U {+oc} of the form

/QAG) Vu(x)~Vu(:z:)d:cf/gf(:v)u(x)dx if u e HY(9),

400 else,

F.(u) =

where  C RY is a bounded open set, f € L?(Q) and A : @ — RY*V is a matrix-valued function in
L that is [0,1)Y-periodic, symmetric and with lower and upper quadratic bounds. To identify the
contribution of the bulk in the first-order limit, we mimic the approach deployed by Allaire and Amar in
[2] assuming that

1
Q:=1[0,1)"Y and e=—, withneN\{0}.
n
This allows us to get rid of the first type of boundary effect. To tackle the second issue with boundary
effect, we restrict the admissible class for the source term f (see Section 2.2 for further details). Using the
asymptotic expansion of functionals given in [4] in terms of I'-convergence, we consider the functionals
Fl:L2(Q2) = RU {+00} defined as

F.(u) — min Fhom
Fsl(u) o (u) HE(Q) I'h ’

€
The principal result of the present manuscript is the identification of the scale € above as well as the
[-limit of F! (see Theorem 2.7). The main novelty lies in the use of the dual correspondence between
quadratic functionals and PDEs. To the best of the authors’ knowledge, this is the first time that these
two theories are combined together to get a variational result.

We briefly outline the strategy we employ. The unique minimizer of F. turns out to be the unique
solution of the following elliptic problem with Dirichlet boundary conditions

—div (A (g) Vus(x)> = f(z) inQ,
ue(x) =0 on 9f.

The investigation of such an elliptic problem has been broadly carried out by many authors, [1, 7, 25] to
name a few (see [8] for an extensive review on the topic). To get a homogenized equation, the classical
strategy relies on the two-scale expansion developed in [1, 28] of the solution . :

x
ue(x) = up(x) + eug (:U, g) +..., (1.4)
where ug is the solution of the homogenized equation given by
—div (Ahom Vuo(z)) = f(z) in Q,
uo(x) =0 on 012,

where Apom is defined through the cell formula (1.2) with W (y, £ + Vu) = A(y) (€ + Vu(x)) - (£ + Vu(x)).
Moreover, the function u; is defined through the first-order correctors (see Section 3 for the precise
definition). One would be tempted to use the ansatz (1.4) in the variational analysis for the functional
F! to deduce the limiting energy. However, this idea does not work out. The reason is that the following

estimate
‘ < Cy/e

oo ()]
e/ (o)
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turns out to be sharp (see, e.g., [7]). This surprising result suggests the presence of another phenomenon,
known as boundary layers. They are further first-order corrections needed to match the boundary con-
ditions (see [2, 5, 24]). Due to the high oscillatory nature of these functions, their energy contribution is
not clearly quantifiable with respect to the parameter €. This is what we have referred to as the second
type of boundary effect. In order to avoid this high oscillatory behavior at the boundary, we essentially
consider the case where the function u. is compactly supported in 2 by requiring the source term f to
be in a specific class (see Assumption (H5) in Section 2.2). This enables us to get the first-order I'-limit
by using the ansatz in (1.4) together with a refinement of the classical Riemann-Lebesgue Lemma (see
Proposition 4.3).

Finally, we show that the first-order I'-convergence analysis is not needed when the functional F, only
depends on the function u and not on its gradient Vu (see Theorem 2.12). Indeed, in such a case, we
have that the value of the minimum of the functional F. is the same as the one of Fjoy,. This implies
that the expansion by I'-convergence does not provide additional information on the minimizers of the
functional F.

The paper is organized as follows. In Section 2 we specify the set-up of the problem. The preliminaries
and the technical results are given in Section 3 and Section 4, respectively We then turn to the proofs
of the main result: in Section 5 we provide the compactness, while Section 6 and Section 7 are devoted
to the lower and upper bound, respectively. Finally, Section 8 is devoted to the proof of the first-order
homogenization for functionals in L, for p € (1, 00).

2. SET-UP OF THE PROBLEM AND MAIN RESULT

2.1. Basic notation. Here we collect the basic notation we are going to use throughout the manuscript.
Let Y ¢ RY be a periodicity cell, namely

N N
Y:{Z)\ivi10<)‘i<1az)\i:1}a
=1 =1

where v1,...,vy is a basis of R™Y. Without loss of generality, up to a translation, we can even assume
that Y has its baricenter at the origin. This assumption is just to simplify the writing of the main result.
The space H!. (V) is the subset of H'(Y") of functions with periodic boundary conditions. More precisely,

per

uw € H'(Y) if and only if the function @ : RY — R defined as u(y) := u(y) belongs to H. (RY), where

N N
Y= Z)\ivi, Y= Z{)‘i}viv
i=1 i=1

and {\;} =X — [\

Given a function f, the notation f¢ stands for f(x) := f(x/c). Moreover, we denote by 0; the i*" partial
derivative operator with respect to the variable z, and by d,, the it" partial derivative operator with
respect to the variable y. In particular, we have that

0.17(2) = 20, 17(0).

Finally, the symbol (-)y denotes the average over Y, i.e.,

1
Uy =1 /Y f(y) dy,

with |Y| being the N-dimensional Lebesgue measure of Y.
2.2. Main result. Let Q C RY be an open, bounded set, and let f € L?(). Let A : RY — R¥XN he a
matrix-valued function in L* such that

(H1) A is Y-periodic;
(H2) A is symmetric, i.e., a;;(y) = a;;(y);
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(H3) there exist two positive constants «, 8 such that

al¢* < A(y)é - € < BIEP,
for all £ € RV,

For ¢ > 0, let F. : L*(Q2) — R U {+oc} be the functional defined as

F.(u) = A A% (z) Vu(z) - Vu(z) dx — /Q f(z)u(z)de,

if u € HE(2), and as F.(u) :== +o0o otherwise in L?({2).
Under Assumptions (H1)-(H3), we know (see, for instance, [26], [27, Theorem 1.3], or [19, Corollary

24.5]) that {F.}. I-converges with respect to the weak topology of H!(Q), or equivalently the strong
topology of L?(f2), to the effective functional 2 : L*(f)) — R U {+o0} given by

hom

FY o (u) = /QAh(JmVu(x) -Vu(z)dz —/Qf(ac)u(m) dz,

if u € HJ(Q), and by F? _ (u) :== +oc otherwise in L?(§2). Here, the effective matrix Apom is a constant

matrix given by the cell-formula

Ao - € = inf { | AwE+ Vo) - (€ + Tow)dyso e H;erm} | (2.1)

We refer to this I'-convergence result as the zeroth-order term in the expansion by I'-convergence of F.
For our analysis, we need to recall the following. Using the fact that the functional in (2.1) is quadratic,
for each ¢ € RV, the minimization problem defining Apomé - € has a unique solution (up to an additive
constant), denoted by .

Definition 2.1. Let ey,..., ey be the standard orthonormal basis of RN. For each i = 1,...,N, let
Y, € HE (Y) be the unique solution to

inf{ | AW e+ Tot) e+ Vo) dys o € B V), [ w(y)dyo}-

The function ; is called the first-order corrector for A associated to the vector e;.

Remark 2.2. It turns out that the map § — ¢ is linear (see [19, Example 25.5]). Namely,

N
Ve = Z Vikis
i=1

where € = (&1,...,&n). Therefore, the knowledge of the first-order correctors for A is sufficient to obtain
Ahom-

The goal of this paper is to develop further the expansion by I'-convergence of F. (see [4] for further
details). As explained in the Introduction, there are two issues with boundary effects in obtaining such
a result. Thus, in order to carry out our analysis, we need to assume the following

(H4) Q:=Y and we take the sequence &, = %, with n € N'\ {0};
(H5) It holds that
f=—-div(4AnomVyg),
for some g € C(Y).

Assumption (H4) is to ensure that 2 can be obtained as a disjoint union of copies of rescaled versions of
the periodicity cell Y. On the other hand, assumption (H5) is in order to avoid using boundary layers,
which have two main issues: they do not have a variational definition, and their contribution to the
energy is not clearly quantifiable in terms of the parameter €, which prevents us from getting an order of
the energy. From now on, recalling assumption (H4), we will denote by F), the functional F .

We are now in position to write the asymptotic expansion through I'-convergence we will study.
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Definition 2.3. Forn € N\ {0}, we define the functional F}! : L*(Q) — RU {400} as

Fy(u) — mingy o) Fp

Fl(u) = (2.2)

En
Remark 2.4. Note that, using standard estimates (see the proof of Proposition 5.1), it is possible to
prove that, for each n € N\ {0}, the minimization problem

min F,(u)
u€H (Q)

admits a unique solution u™® € H'(Q). In a similar way, it is possible to prove that the minimization
problem

F
ue@grgm om (1)

admits a unique minimizer uf'™ € H'(Q). In particular, we have that
Fn(u) = Fom (ug™)
€n '

Fl(u) =

n

Moreover, the I'-convergence of F}, to F?_ together with the compactness of {u™"},, yields that u™" —

. hom
ufm in L2(Q) as n — oo.
Remark 2.5. Note that assumption (H5) implies that uf® = g. In particular, uf® € C2°().

Our goal is to study the I-limit of the family of functionals {F},. To this end, we introduce the
candidate limiting functional.

Definition 2.6. Define the functional F},_ : L?>(Q) — RU {+oc} as

hom

Bl (u Z / V(0;uf™0uf ™) (x) da - (y [ai; + 24e; - Vb + AVY; - Vil)y

1,5=1

+22/ 1/)1 Yvumm( ) aumm( )

+QZZ / QU™ () (i AV 1)y - B VU™ (z) da

j=11i=1

N
— Z ,l/}j / f' 8 umm ) (23)

if u = uf™, and +oo else in L?(Y). Here, 1; are the first-order correctors defined in Definition 2.1.

We now state the main result of the present paper.

Theorem 2.7. Let F} and F}, be the functionals given by (2.2) and (2.3), respectively. Assume that

Assumptions (H1)- (H5) hold. Then, we have the following:

(i) Let {un}tn be a sequence in H'(Q) such that sup,, Fl(un) < 00. Then, {uy}, converges in L*(Q)
to ulin | where u™ is the unique minimizer of F) D -

(ii) The sequence {F.}, T'-converges with respect to L*(Q) topology to F .

It is worth noticing that the above result can be read as follows: in the bulk, the order of the energy

F, is €, and the normalized difference from min F?, _ is given by the (Constant) functional F} .

We show that the analogous first-order I'-expansion is trivial in the case of functionals defined on LP.
We are able to prove this statement in a more general setting than that considered above. Fix p € (1, 00)
and M > 1. Let V : Q x RM — R be a Carathéodory function such that

(A1) For each z € RM | the function z +— V (x, 2) is Y-periodic;
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(A2) There exists 0 < ¢; < ¢g < 400 such that
a(lzl” =1) <V(z,2) < eofl2[” + 1),
for all z € Q and 2z € RM.

Note that in this case the source term would only be a part of the function V. That is why there is
no analogue of assumption (H5).

Definition 2.8. Forn € N\ {0}, define G,, : LP(;RM) — RU {+00} as

() ::/Qv (i,m@) da.

Remark 2.9. Note that there is no loss of generality in assuming the function V' to be convex in the
second variable. Indeed, the relaxation of G,, with respect to the weak-L?({2) topology is given by

Gi(u):/gvc (;;,u(x)) dz

where V¢ denotes the convex envelope of the function V' in the second variable.
We now introduce the homogenized functional.
Definition 2.10. For z € RM | let

Viem(2) = inf {Dl/' [ v+ etna s e ey, |

Yw(y)dy—o}-

Define the functional Gpom @ LP(;RM) — RU {+00} as

Ghom ::/QVhom(u(x)) dz.

Using the same arguments as in the proof of [17, Theorem 3.3], we get the following,.

Lemma 2.11. Assume that Assumptions (A1)-(A2) hold. Then, Gy, — Gnom with respect to the weak-
LP(Q) topology.

Next result justifies our claim that the I'-expansion is trivial in such a case.

Theorem 2.12. Assume that Assumptions (A1)-(A2), as well as (H4) hold and that, for ally € Y, the
function u > V (y,u) is strictly convex. Let m € RM. Then,

min {Gn(v) cv € LP(Q;RM), /Qu(x) dz = m} = min {Ghom(v) cv € LP(Q;RM), /Qu(x) de = m} ,
for all n € N\ {0}.

Remark 2.13. The assumption of strict convexity is needed only to simplify the strategy of the proof,
since we need to invert the relation

OV (x,v) =c.
Strict convexity gives us a unique inverse, while with convexity alone we would have to get a slightly
more involved argument. Since this result is to show that for these functionals there is no need to a first
order I'-expansion, we decided to use this extra technical assumption.

Remark 2.14. Note that, in this case, boundary conditions are not natural. This is why we consider a
mass constraint instead.



FIRST-ORDER HOMOGENIZATION 7

3. PRELIMINARIES

3.1. Recall of homogenization. We recall the foundations of the homogenization theory for elliptic
equations. Even if this theory is classical by now, we revisit it since we will use a slightly different
definition of the correctors than that in [2, 7].
Let Q be a bounded and open subset of RY. Let A be the matrix-valued function satisfying Assumptions
(H1)-(H3). For a given f € L?(£2), we consider the following equation
—div(A®(z)Vue(x)) = f(z) in £, 31
us(x) =0 on 0. (3-1)
It is well-known that this problem admits a unique solution in H{(f2) (see, e.g., [7]). To carry out a
homogenization procedure, the solution u. is assumed to have the following two-scale expansion

x x 9 x
ue(x) = ug (x,f) + euy (x,f) + e%uq (m,f) +...,

€ € €
where each w; is Y-periodic with respect to the fast variable y = £. The variables x and y are
treated as independent. Plugging such an expansion into (3.1) and identifying powers of e, we get
a cascade of equations. Here, we only care about the second-order expansion. Therefore, setting
A.p(z) = —div(A®(z)Vé(z)), we deduce that

A, = 5_2./40 + E_lAl + Ao,

where

N N
A== 0y | D aiw)dy, |,
i=1 =1

N

N N N
Avi= =0 | Doay@o; | =D 0 [ Dy, |,
i=1 j=1 j=1

i=1

N

N
=D 0| D a9y
i=1 J

—1

Agl

Using (3.1), matching powers of € up to second order gives us the following equations

Aoug =0, (3.2)
Aouq + Ajug = 0, (33)
Aouz + Arur + Azug = f, (3.4)
.A()Ug + A1U3 + A2u1 = O (35)
From (3.2), it follows that ug(z,y) = wo(x). The solution u; to (3.3) is given by
N
x ~
u (x g) — lej (z) Bjuo(z) + Ty (z), (3.6)
i=
where, for j =1,..., N, %; is the unique solution in Hrl,er(Y) to the problem
N
Aothi(y) = Y Dyais(y) Y,
i=1
(3.7)

| wway=o.
y = Yi(y) Y -periodic.
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Namely, for j = 1,..., N, the function 1, are the first-order corrector defined in Definition 2.1. The
solution to equation (3.4) is given by

N N
T 15 g ~ ~
us (2,2) = 2 i (@) Ohuo(w) + 305 (@) 05 (@) + (), (3.8)
1,]= J=
where for all ¢,7 = 1,...,n, the second-order corrector x;; € Hper(Y) satisfies the following auxiliary
problem
Aoxij(y) = bij(y) —/sz'j(y) dy inY,
3.9
/ Xij(y) dy =0, (39)
Y
Y Xi; (y) Y -periodic,
with
bij (y) = aij(y) + Zazk Dytoj (y) + Zayk (ariths) (9)- (3.10)

It is worth recalling that the function @; in (3.6) can be taken 1dent1cally equal to zero if one is only
interested in the first-order expansion of u.. Otherwise, u; is determined by the compatibility condition
of equation (3.5), namely,
N
div(ApomVuy (z)) = — Z c”kaukuromn(x), (3.11)
i3 k=1

where Apom is the homogenized matrix defined by (2.1) and for 4,5,k = 1,..., N, the constant ¢;;; is

defined as

N

Cijk = <Z ariOy, Xij + aij¢k> : (3.12)
1=1 Y

Since in the present paper, we are interested in expanding u. up to the second-order, the function s in

(3.8) can be taken identically equal to zero.

Remark 3.1. In the following, we will use the above theory for the function uf" in place of ug.

3.2. Periodic functions. We collect some useful properties of the space L2 .(Y;RY) of the periodic

functions (see [25, Chapter 1] for further details).
The space L2 () of solenoidal periodic functions is defined as

Liy(Y) = {f € Ly, (Y;RY) : divf =0 in R},

where the equality divf = 0 is to be intended in distributional sense, i.e.,

per(

R f(z)-Ve(x) de =0, for any p € C(RN).

The space L2 (V) turns out to be a closed subspace of L2(Y;RY). Setting
Voor (V) = {Vu i u € Hyo (ViRY)},

per

we immediately deduce the following orthogonal representation
L2 (Ya RN) Lsol( ) @ Vf)ot (Y)

per
The next proposition provides a representation of solenoidal functions, which will be a key tool in Propo-
sition 4.9.

Proposition 3.2. Let f € L2,(Y). Then, f = (f1,...,fn) can be represented in the form

N
fi(z) = (fi)y + Zaiaij(x), forallj=1,... N,

where ai;; € HY(Y') is such that o;; = —ay; and (ai;)y =0, for alli,j=1,...,N.
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Proof. Without loss of generality, we can assume that Y = [0,27)". Using the Fourier series of f, we

have that .
F=y+ ) fre*e,

kez
k70

where f* is the Fourier coefficient of f. We claim that f* -k = 0, for each k € Z". Indeed, for fixed
k € ZN \ {0}, we can decompose f* as f* = C¥k + Chv, for some constants CF, C¥ and v € (span(k))*.
Therefore,

F=(Hy+ D Crke™™ + Y Chve*™.

kez™ kezN
k#0 k#0

Noticing that ike** = V(el**) € V2 (V) and since by assumption, we know that f € L2 (Y), we obtain
that CF = 0, for any k € Z \ {0}. This leads us to conclude that f* -k =0, and that C5v = f*.
Therefore,
k
k_ gk Sk
— Ry

which writes, component-wise, as

N
f]k = Z gzkjkiv with  g;; = |/€|2

i=1
Therefore, for each j = 1,..., N, we get that

N N
fi= by + D0 M =iy + 30 3 aikie™ ™ =iy + 3 Y gk

kez™ kez™ =1 =1 gezN
E#0 k0 E#0
Thus, by defining
a;j(z) = -1 Z gfjelk'x,
kezN
k0
we get the desired result. O

4. TECHNICAL LEMMATA

4.1. First order Riemann-Lebesgue Lemma. We prove a quantitative version of the Riemann-
Lebesgue Lemma. Since we will use this latter result several times, we recall it in here for the reader’s
convenience.

Lemma 4.1 (Riemann-Lebesgue Lemma). Let p € [1,00), and let Q@ C RY be an open bounded set. Let
g € LP(RN) be an Y -periodic function. Then,

lim [ gnz)p(z)dz = (g)y / () dz,

n—oo [q Q
for all ¢ € LV (), with - + % =1.

Remark 4.2. The above result holds also for p = 400, but in that case we need the test function
v e L'(Q).

The refined result requires more stringent assumptions. Nevertheless, we will later show how to relax
some of them.

Proposition 4.3 (First order Riemann-Lebesgue Lemma). Let p € [1,00), and let g € LP(RY) be an
Y -periodic function. Let Q C RN be an open bounded set such that, up to a set of Lebesgue measure zero,
can be written as
k
Q=J@+Y), weZV, (@+Y)N(x;+Y)=0 if i #j. (4.1)

i=1
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Then,

n—oo

im0 | [ gnaloto)de )y [ oloyds] = [ Votw)de: laly - v ]
for all p € C2(Q) N C(Q).
Proof. Let {z;}; be an enumeration of Z~. For each n € N\ {0}, let
I, = {zeN —(zi+Y) CQ}
Note that, by (4.1), we get that (up to a set of Lebesgue measure zero)

o= %(Zi-i-Y)

icl,

being a disjoint union. Moreover, the cardinality of I,, is n™V|Q2|/|Y|. Recall that, by periodicity of g, we
have that g(z; +y) = g(y) for all z; € ZV. Then,

| stna)ota) da - ‘Y‘/ W [ otz
-an[/ Zz+y>¢<’§”>d-&ﬁ(“y> / o

i€l
=> / o (21Y —s@(ﬁ / w(ﬁ) dy/g(y)dy~
= nN n n VG n v
We now use a second-order Taylor expansion for ¢ to write
zi+y 2 1 Zi 1
w()—w()sz()-y Hso( )[yy}+0<2>7
n n n n 2n n
where Hp(x) denotes the Hessian matrix of ¢ at x. Thus, we get that

| stna)ota) o~ [ sy [ ola)ds
L5 ) [ o ] (2

Sending n — oo, and noting that
1 Z;
V|5V (2)
Z | InN “\

icl,
is the Riemann sum for the integral of Vi over (), gives the desired result. O

Remark 4.4. Note that the above result is invariant under translation of the periodicity grid and of
the function g. In particular, there is no loss of generality in assuming that (y)y = 0, namely that the
barycenter of the periodicity cell is at the origin.

Remark 4.5. In particular, the above result implies that

lim { [ stwarotrdo =ty [ o) dx} 0,

n—oo

for each Y-periodic function ¢ € C?(RY).

Finally, we present some extensions of the above result. Their proofs follow the same argument used
above, and therefore we will not repeat them in here.

The first extension uses the fact that, in dimension N > 3, given a general open set  C RY with
Lipschitz boundary (or even whose boundary has finite #~ ~! measure), the contribution of the cubes
(2; +Y)/n that intersect the boundary of €2 is of order n! =" <« n~1L.



FIRST-ORDER HOMOGENIZATION 11

Proposition 4.6. Let N > 3, and let Q C RN be an open set with Lipschitz boundary. Let p € [1,00),
and let g € LP(RYN) be an Y -periodic function. Then,

lim n [ | styeta)ds — o)y [ ol dx} = [ Vetwydz- oy =ty ahv],

n-roo
for all p € C*(Q)NC(Q).
Remark 4.7. Note that, in dimension N = 2, the contribution of the terms at the boundary of €2 is of
the order n~!. It is therefore, in general, not possible to estimate this term.

Finally, we can extend the above result to the nonlinear case.

Proposition 4.8. Let p € [1,00). Let V : RN x R — R be a Carathéodory function that is Y -periodic
in the second variable, and such that t = V (x,t) is of class C? for all z € RN. Assume that (4.1) hold.
Then,

Jim n[/QV(m; oz ))dx—/ <V oz) >y da,}

/Q|Y/8t W, 9(z))Vep() -y dydz = |Y|2///8t (2, p())Vip(a) -y dz dy de,
for all p € C?*(2) N

4.2. Estimates. In this section we prove the fundamental estimate that allows us to consider the ‘sur-
rogate’ sequence given by the expansion with first and second-order correctors in place of the minimizer
ul"". Recall that uf™™ € C°(Q2) (see Remark 2.5).

Proposition 4.9. Let ug) be the function defined as

u® (2, ) = WP (@) + e (v,y) + ez (2,9) (42)
with uy and uy being defined as in (3.6) and (3.8), respectively. Then, it holds that
[div(A®Vul?) — div(AMm VU)o o) < Ce?,
for some C < +o0.

Proof. First, note that

N
div(A(2)Vul (2). — A Vug () = Y 0, ( 2)Vul® (z) — Ahomvugnin(x))i) ,
i=1
where, for ¢ = 1,..., N, the i-th component (Ae(x)V (a:) Ahomyzymin (), is given by
(A% (2)Vul? (z) — APV (2)); = P o(2) + €Qie () + 2Ry o (2), (4.3)
with
N . N N
Pie(x) =Y a5 (@)0jug™ (@) + Y aip (), 45 (@)05ug™ () = Y al"ojup™ (@),
j=1 4k=1 J=1
N N N
Qielz) = Y 5(@)ag()dfug™ (@) + D af(@)dy x5, (2)0;ug™ (@) + ) af;(x)d; (x)
Jik=1 k,j,l=1 j=1
N
+ D a5 (@)D, 05 ()05 (@), (4.4)
k=1
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We now estimate the above terms, starting from P, .(x). Note that P; () rewrites as
N .
x) = Zgf’g(ac)ajuolmm(ar:)7 foralli=1,...,N,
where g7 is defined as

g (y) = aij(y +Za’k Oy ¥ (y) — ahom, foralli,j=1,---,N.

For fixed j = 1,..., N, set G7 = (gi sy g). We have that G € L2 (V). Indeed, thanks to problem
(3.7) satisfied by v;, it follows that

div G7 (y Z By gl (y

Therefore, by applying Proposition 3.2, the components of GJ are represented by

Z i O ( (4.5)

Note that (g?)y = 0, since

ahom — <au T Zalk By i ( )> . (4.6)
v
Using the representation (4.5) as well as the Lelbmz rule, we get that

Z aykaz/: 8 mln( )

k=1
N
=¢ Z A (alif D ul™)( Z ()07 ;ub™ (x)
g k=1 k=1
Hence, (4.3) turns into
N
(A (2)Vul) (z) — APmVug™(2)); = e | Y (ol 0ul™) (@) + Qic(x) | +&*R;c(2), (4.7)
k=1

where

B N

Qie(7) = Qie(z) — Z i (@) up™ (@),

k=1

with Q; . being defined as in (4.4). We now estimate @i e(z). As for P, ., va(x) can be rewritten as

Qic(z hﬂ” )OZ uin( + t]f )0ty (), foralli=1,...,N, 4.8
kU
7,k=1

where for any fixed j, k = 1,..., N, the functions hk] and ¢/ are defined as

B (y) = ¥(y)aily +Zazz Dy xii () — o (), (4.9)

t](y) = a;(y +Zam Dy (y)- (4.10)
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We claim that H* = (¥ ... h%7) as well as T9 .= (#],...,¢},) belong to L2,(Y). Indeed, bearing in
mind that xj; is the solution to (3.9) together with the fact that
Zayi(*o‘gk) = Zau(aii) = 9k
i=1 i=1
we deduce that for fixed j,k=1,..., N,
div(H*) = Z@ hkf( ) = Z (V5 (y) + Z@ ; (Z a,lal)(k]> Zayi(—afk)(y)
i=1 i=1 i=1
N .
= 2 00y o) ~buso) + / brsdy + g1 (y) = 0,
— Y

where we have used the equality ahom = (bg;)y (cf. (3.10) and (4.6)). Likewise, since 1; is the solution
to (3.7), we immediately conclude that
N

div(T7) Zayztf Z i (az] + Zazk Oy, 5 ( )) =

i=1

Therefore, applying Proposition 3.2, it follows that the components of H* and T are represented by

N N
W () = (W7)y +> 0,87 (y) and tl(y) = t)y + > 0,7k ),

=1 k=1
for all ¢ =1,..., N. This implies that
N
Qic(x) = Y (h7)y O jug™( Z 0y By ()0} up™ ()
J.k=1 4,k 0=1
N N N
+ Y )y o) + YD 0y v ()05 (z)
Jj=1 jk=1k=1
N N
= > (W )y ug™ (@) + Y (#)y 05t ()
g k=1 j=1
N
+€< Z al kJ,eakj m1n Z ﬁh, 8”(7] mm(x)
gk, 1=1 4,k 1=1
N
+ Z a" ’yzk a ul Z Py 8’€ju1 ( ))
7,k=1 7,k=1

From (4.3) together with (4.7), we conclude that

(A°(2)Vul? (x) — AP0 Vug™™ (@), = Z Ok (e Djug™) () +

=

N
(B )y OFug™ () + > (t])y 0 (x
j=1

J,k=1 j 1
N N B
+e? | D0 BT (@) + Dt (2) + Ric(w) |
J,k,l=1 j,k=1
where R; .(z) is defined as
Es(z) Z 5kj€ alk; mm Z ’Y 5kJU1 ).

7.k, =1 7,k=1
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Noticing that <hfj>y = ciji (cf. (3.12) and (4.9)) and (t/)y = ?Om (cf. (4.6) and (4.10)) as well as
bearing in mind problem (3.11), we obtain that

N N N
Do Y )y o ug (@) + > (v ot (x) | =0.
i=1 Gok=1 j=1
Moreover, since afk = —aii, it follows that
N N
S o | > on(edfouf™) (@) | =o0.
i=1 gok=1
Likewise, since ﬁiklj = —ﬁk-j and 'ygk = —’yii,
N N N
> o Z B R g™ (@) | =0 | D ai(vo5u) (=) | =o.
i=1 3ok, l=1 i=1 gok=1

Therefore, _
div(A4% (2)Vu? (z). — APVuPi () = e2div(R.(z)),
with ﬁs = (ELE, cee, ]TZN’E) Now,
Idiv(A°Vu® — ARG |y ) = |divEel o) < |1 Bellza@) < O,
which concludes the proof. O

5. COMPACTNESS RESULT IN THEOREM 2.7

In this section, we are going to prove a compactness result stated in Theorem 2.7(i).

Proposition 5.1. Let {e,}, be a sequence such that e, — 0 as n — oo. Suppose that Assumptions
(H1)-(H3) hold. If {un}, C HY () is a sequence such that

sup FF (uy,) < oo,
n
then, {un}n converges to uf™ € H(Q) weakly in H(€2).

Proof. First, recall that thanks to Assumption (H3), the homogenized matrix Ay,m satisfies the same
growth conditions with the same constants, i.e.,

O‘|€|2 < Aphomé - € < B|§|27
for all £ € RY. Let A > 0 that will be fixed later. Note that

—ab > ——— — —b°, (5.1)

for all a,b > 0. Let Cq > 0 be the Poincaré constant of €2, i.e. such that,
[vllz2(0) < CallVollL2(@rn), (5.2)

for all v € H}(Q). Recall that if u € L?(Q) is such that F,(u) < 400, then u € H}(Q). By using (H3),
(5.1) and (5.2), we get

A2 1
Fr(u) > 04||VU||%2(Q;RN) - ?HUH%Z(Q) - ﬁ”f”%zm)

A2 1
2 (Oé - 2C§22> IVul|72@myy = 27/\2||f||2L2(Q)'
Namely, 2 2
(o= 568 ) IVular, < Falw)
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V2«
AE (O’CQ ,
IVull 22 @@mny < C(Fo(u) +1) < C(Fy(u) + 1),

where the constant C' > 0 changes all the times. Since u € H}(2), using the Poincaré inequality again,
we get that

Choosing

yields that

ull 1 () < C(F (u) +1).
Therefore, if {u,}nen C L?(2) is such that
sup F} (uy,) < 400,
neN
then, there exists a subsequence {uy, }ren such that u,, — v weakly in H*(£2), for some v € H*().
We now prove that v = uf"". Assume by contradiction that v # u™. Since the minimizer u§'™ is

unique, it follows that _
hHl lnf Fnk (u’ﬂk) Z Fl(l)om (U) > F}?om(u{)nm)'

k—o0

Thus,

Fn " _FO min
lim F! () = lim k (Uny) — From (ug ):+OO.

k—o0 k—o0 Eny,
This gives the desired contradiction. Since the limit is unique, we also get that the full sequence converges.
O

Remark 5.2. Note that, in order to get compactness, we do not need to have Assumptions (H4) and
(H5) in force.

6. THE LIMINF INEQUALITY FOR THEOREM 2.7

In this section, we prove the lower bound of Theorem 2.7 (ii).
Proposition 6.1. Assume that Assumptions (H1)-(H5) hold. Then, for any sequence {un}n, C L*(£2)
converging to uS"™ with respect to L?(Q) it holds that

liminf F} (un) > Fl (ug™).
n— o0

Proof. Without lost of generality, we can assume that

liminf F} (u,) < oo.
n— oo

Let u'?) be the function defined in (4.2). Then, it holds that

Fn n) — FO min
lim lnf Fé (un) = lim lnf (U ) hom (U’O )
n—00 n—00 €n

F min _FO min
> lim inf n(un ) hom(uo )

n—oo En
min (2) (2) 0 min
Fn — Fp(un . Fa(un) — F
> lim inf (™) = Fo(un’) + lim inf n(un”) = Fiom (ug™)
n—0oo En n—o00 &n

= liminf I} 4 liminf I2 + lim inf I?,
n—oo n—oo n—oo
where . ©
p o Falun™) = Fy(u?)

n ’

En

1 . .
I? = - [/ A (2)Vul? (z) - Vul? (z) de — / Anomug () - ug™ (z) dx |,
n Q Q
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and .
I = = F@)(ulP (z) — uf™ (x)) dz.
‘We now claim that
lim I =0,
n— o0

and that
lim (15+I3) Fhom( mm)'

n—oo
These will give the desired result.

Step 1: limit of I}. We have that

Il = 1 [ /Q A (2)Vul? (z) - VP () da — / Asn () Vun () - Vu™n(z) dx]

En Q

- = [ @ @) - ) de.
n JQ

Writing u'?) = = a4 (yy, @ _ uin) oives

— / Afn (x)Vugf) (x) - Vug) (x)dx — / A% (2)Vu™™ (z) - Vu™ (z) da
Q Q

En

1 € min min
= | [ 4@V - @) V) - @) ds
2 [ 4en (2) _ yminy () . Ty (2
Jr8 A (2)V (uy; up™)(x) - Vuy ' (z) do
n JQ
e (a9 =), (1 = <2
< en (1™ iy + 316Dy ) (6.1)

where the last step follows from Proposition 4.9. Note that from (H3), together with the fact that
u? — ymin ¢ FL(Q), it holds that

a||V(u$L2) _ UTI{lin)H%Z(Q) < /QAETL (x)V(ug) — unmln)(x) . V(u£l2) _ U;mn)(x) da
< s [ A @VEE - ua) - V() de
peHl () )0

= [l (4= v —uzm) [ I =

< (1+Ca)|

div (4 V(uf® — ui)) HH-m) IV (® — ™| 2 0.

Therefore, calling Cq the Poincaré constant of €2, we obtain that

L 2)(u® () — ™" (2)) dz
= [ @@ - @)

1 min
< ;Hf”L?(Q)HUSmQ) —up " L2 ()

CQ mln
< *||f|\L2(sz)||V(U§) n L2 )

(1+C’Q)CQ ’ . envor(,(2) _ . min H

< SR g [aiv (4@ - am)|
1+ Cq)C

S T (62

where the last step follows by Proposition 4.9. Since

sup (14| 1130y + 3142 g oy ) < o0,

n
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from (6.1) and (6.2), we get the desired result.

Step 2: limit of I2. Note that

Vugi)(x) Vi ( mm + En Zwsn mm + En Z X mm _ 8n2 Zw alul )

r,s=1

= Vumln + Z qu/) mm( )
N ) N N
+en [ DU (@) VO™ (@) + D V(g (@)™ (@) = > Vy (U ()it (« )]
i=1 r,s=1 =1
+ o(en)-

Therefore,
Asn (x)Vugi)( ) Vu 2)( Ydao = H,, + e,Gyp, + 0(en),
Q
where H. and G., are defined as

N
o= Jy A (V“"‘“‘< AP <x>>@i“3‘m(””) |

and
N N
Goi=2 [ 470 (Vi >+;vy<w<x>>aiu3“<x>) (S v wvese)
N N
30 V0N ) — Y V0 ()01 ) ) do,
r,s=1 =1
respectively.

Step 2.1: asymptotic behavior of H,. Using Proposition 4.3, and recalling that we are assuming
the barycenter of Y to be at the origin, we get that

[ A @) - V@) do
Q

N
= Z/aj;(x)au " (2)Qu () da

i,j=17%
N
= Z(aij>y/8u0 (2)0;uf™ () d
Q=1 Q
N
+én V(0iug ™ 05ug™) (z) dz - (yaij)y + o(en) (6.3)
i,j=179

Moreover,
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= Z / S (2) DUl (2) DUl (3) dar

1,j,s=1
— Z <ajsaygwl /6‘u0 x)0; um”‘( ) dx
i,j,s=1
N . .
ten Y | VOug o) (@) de - (yag,d,, iy + olen).
i,j,s=17

Finally,

N
[2A8”<$)<2Vy<¢f"‘( DI ) (ZV (@)™ (@ >) da

=

N
= > /Qaizmaysw (2) D™ ()0, 15 () Dyl ™ (@) da
1,7,m,8=1
N

Z arsays wl yr,(/J] / 8 UO a umln( )dx

%,5,r,8=1

.S [ V@0 ) (4504, + ol

%,7,r,8=1

Therefore, from (6.3), (6.4), (6.5), and the definition of Apem (see (2.1)) we obtain that

H, = / Apom VU™ (z) - Vu™™(z) dz

+éen Z/ (Bpul™9uf™™) () dz - (y [ai; + 24ej - Vb + AVY; - Vb)), + olen).

i,7=1

Step 2.2: limit of G,,. Therefore,

F min FO min
lim n (U’n ) hom( ) — liminf G ( mln)
n—oo En n— 00

To make the computations more clear, we split G, (u™") :== G,, (ul®, %, ) as follows
G(u(r)nln~) Gl( m1n~)+G2( mm~)+G3( mm~)+G4( min ﬂl)
—|—G5( min ~)_|_G6( min al)

where the functionals G? (ui®, @), for i = 1,...,6 are glven by

Gl( m1n7~1) — Q/S;Asn mm Z¢En mm(l‘))dl‘,

G2( mln7 ~1) =9 AE" m1n Z v er mln(x) dl‘,

Q r,s=1

N
G3 (ug™ ) = — /AE" ud™( ZVU x))0yu1 () du,
Q 1=1

(6.6)
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N N
G (uf™, @ _2/,45" )0V, @ (@) (@) - 3 g (o) V() da,
j=1 i=1
N N
G5 (™™, ) = 2 / AT (@) D Ty (5 (@) dug ™ (2) - > V(x5 ()02 ug ™ () da,
j=1 r,s=1

N N
GG( mm ~ ) — _2/ AEn ZV E" a umm ZVy E'L 8[“1( )dx
Q -
j=1 =1

Now, we separately compute the limit as n — oo of each functionals G%. Using the Riemann-Lebesgue
lemma (see Lemma 4.1), we get

lim G} (uf™,uy) =2 lim Z / Yo (@) A% () Vel (z) - 9, Vul (z) de

n—oQ

fzz/ DAYy V™ () - 0,V () der (6.7)

Regarding the second functional G2, we obtain that

2 min ~ mln En En 2 _ min
lim G2 (g™, i) =2 lim Zl / VUl () - A% (@), (G2 (2)) 02,05 (2) da

=2 Z Z/ Djub™ (z)(Aej - Vxrs)y 07ub™ (z) da. (6.8)

r,s=1j5=1

Here, we have exploited the symmetry of the matrix A to deduce that

Vg (z) - A% (2)Vy (x7z (2 23 up™ () (A% (2) Vyxis (),

Za up™ () (A7 (2)Vyx7s () - ¢))

I
Mz i

0jup™ (x) (Vyxpz (@) - A7 (2)e;) -

j=1
Similarly for G2, it follows that
Tim G ) ——2nlgrgoz [ @) 4 @)V, 5 ()0 )

— 2 lim. ;2 / D™ (@) - [A (@)e; - V(4™ ()]0t () dr

:_QZZ / D™ () (Ae, - Vyih)y Oy () dir (6.9)

=1 j=1
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The limit G (uf™, 7)) as n — oo reads as follows

i G (i) = 2 Tim ZZ / DU ()57 (2) A ()7 (15 (2)) - B (V™ () dlx
- Zz/aumm V(i AV )y - 0;(Vuf™ (z)) da. (6.10)

For G?, it follows that

Tim G5 (uf™, ) = 2 lim Z Z / U™ () A% (2)V,, (457 (2) - ¥, (x5a (2)) 02,05 ™ (2) da
j=1r,s=1

22 Z /(“)u“““ WAV ;- Vo Xrs )y Orug™ (x) da.

j=1r,s=1

The variational formulation of the problem of the corrector v, (see (3.7)) with x,s as a test function
yields

(AVy(¥5) - Vy(xrs))y = /Y A(Y)Vy(y) - Vyxrs(y) dy = — /Y A(y)ej - Vyxrs(y) dy = —(Aej - VyXrs)y-

This implies that

lim G? (uf™, ) 722 Z /8 ud™ () (Aej - VyXrs)y 02u ™ (z) da. (6.11)

n—oo
j=1r,5=1

Finally, the limit of of G as n — oo is

i G g™ i) ‘—QJLH;OZ”Z / Oju™ () A (2) V(5" (2) - Vy (¥ (2) Ot () d
J 1
77222/3“““ WAV ;- Vyhi)y Ot () da.
j=11=1

Using again the variational formulation of the problem of the corrector 1; (see (3.7)), choosing as test
function v, yields to

<Avy¢j ' Vy¢l>Y = _<Aej ’ Vy¢l>Y~
Thanks to this equality, it follows that

lim GO (w2, ;) _222/5 min (2 (Ae; - Vyiby)y Oyt () da (6.12)

n—o00
j=11=1

Gathering formulas (6.7)-(6.12) and noting that (6.8) and (6.11) as well as (6.9) and (6.12) cancel out,
we deduce that

lim G (uf™, ) = hm Gl (uf™ ) + hm G (uf™ 7y)

—22/ (1h; Ay Vul ™ (z) - 0y (ul™( dx+2z:1§;/ Dul™ () (1 AV 1bi )y - 95 (Vul™ () da.
(6.13)

Step 3: limit of I?. A direct computation shows that

R (2) _ rmn — En min
dm o [ @ (@) dz = J;H;OZ/f 20y (@) do
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N
=> (W / 2)dui™ (z) da. (6.14)

j=1

7. THE LIMSUP INEQUALITY FOR THEOREM 2.7

In this section, we prove the upper bound of Theorem 2.7 (ii).

Proposition 7.1. Assume Assumptions (H1)-(H5) to hold. Then, there exists a sequence {uy}, C HE(Q)
converging to uS™ weakly in H' () such that

lim F( n) = Fhom( mm).

n—oo

Proof. We define, for n € N,

(@) i= +a§jw€ﬂ Du™ ().

The weak convergence of {u,}, to u™ is a direct computation. Moreover, the desired convergence of
the energy follows from (6.7), (6.9), (6 10), and (6.14). O

8. PROOF OF THEOREM 2.12

This section is devoted to the proof of Theorem 2.12. We first illustrate the idea of the proof by
considering the special case
V(z,p) = a(z)pl*,
where a : RY — R is an Y-periodic function such that 0 < ¢; < a(c) < cg < 4oo for all z € Y. Then, it
holds that

Vi) =min{ [ at)lp + pn)P s : o ), [ ety =o}.

This mininization problem admits a solution, that we can compute explicitly. Indeed, the Euler-Lagrange
equation gives the existence of a constant ¢(p) € R such that

2a(y)(p + ¢(y)) = c(p),
for almost every y € Y. Recalling that a(y) > 0, we obtain

o(y) = 2258) —p

Moreover, the constant ¢(p) can be computed by the zero average requirement for ¢:

C(p)—2p</ya(1y)dy>l-
Viom (p) = p? (/Ya(ly)dy)l,

~1
1
Ghom (v :/vgx dx (/dy) ,
(v) = | v(=) o
for all v € L?(9).
Fix m € R. We now consider the solution vJ® € L?(2) to the minimization problem

min {Ghom(v) cv e LN /U Ydz = }
Q

Thus,

which yields
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The Euler-Lagrange equation gives the existence of a constant ¢ € R such that

| 205" () (/Ya(ly)dy)lzc,

for almost every x € €2. Thus, v§*™ is constant. The mass constraint gives that

min m

vp' " (z) = @,

o= ([ )

In a similar way, we can obtain the solution v;"" to the minimization problem

min{Gsn(v) s e LA(Q), /Qv(:n)dxm}.

for all x € 2, which yields

This gives
vmin(x) _ Cn
" 2a5n (z)’
where )
1 _
cp = 2m (/ dx) .
o a* ()
Thus,

Gutu = ([ 1@)@)

Note that thanks to our assumptions on €2 and &,, we get

1 1
Az =10 / —_dy
ekl &
Therefore, from (8.1) and (8.2), we conclude that
G (o) = Ghom(vé“i“),

for all n € N\ {0}, as desired.

(8.1)

(8.2)

In the general case, we use a similar argument as the one implemented above. We first consider the

homogenized energy density

vhom<p>=min{ [ v+ stna e ). [ so(y)dyzo}.

Since we are assuming p — V (y,p) to be strictly convex, for each y € Y we denote by 9,V "(y) : R - R
the inverse of the map 3,V (y,-), and we use the notation v — 9, 'V (y)[v] to avoid the use of too many

round parenthesis. We get that the optimal perturbation ¢ satisfies
p(y) =9,V (y)lep)] —p,

for some ¢(p) € R, which can be computed by using the zero average constrained

p= /Y 05V (y) e(p)] dy.

If we now consider the solution v§*™ € L?() to the minimization problem

min {Ghom(v) v e LA(Q), /Qv(x) dz = m} ,

we get that

min

BE



FIRST-ORDER HOMOGENIZATION 23

Ghom (V™) = |Q\/YV <y,8p_1V(y) {c (&)D dy.

If we now consider the solution v™" to the minimization problem

min {Gn(m v e L), /Qv(x) dz = m} ,

In particular,

we get that

n

oV (:,Ugli“(x)) = Cp,

where, using the mass constraint,

_ X _
m= [ o7 (£)elaz =1l [ o7 Vilean
Q n Y
This gives that

G (vmim) :/QV (m,aglv (x) [cn]) dz = |Q\/YV(y,6p_1V(y) lea]) dy.

En €n

It is possible the choose

o_m
. 4 n ‘Q| )
which gives G, (v2"™) = Ghom (vi™™") for all n € N\ {0} as desired.
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