
FIRST-ORDER HOMOGENIZATION

RICCARDO CRISTOFERI AND LORENZA D’ELIA

Abstract. We provide a first-order homogenization result for quadratic functionals. In particular, we

identify the scaling of the energy and the explicit form of the limiting functional in terms of the first-

order correctors. The main novelty of the paper is the use of the dual correspondence between quadratic
functionals and PDEs, combined with a refinement of the classical Riemann-Lebesgue Lemma.

1. Introduction

First-order homogenization does not exist. The non-existence has its roots in two types of boundary
effects. The first one arises when the domain is not a disjoint union of suitable rescaled copies of the
periodicity cell (see [12, Example 1.12]). The second comes from the oscillatory nature of correctors in
the homogenization theory (see [2, Equation (2.12)]). Nevertheless, in this manuscript, we will provide
a first-order Γ-convergence result for quadratic energies under suitable assumptions which allow us to
‘forget’ about the boundary. In particular, the scaling and the principal part of the energy in the bulk
will be identified.

Nowadays, homogenization is a very well-established mathematical theory describing how the mi-
crostructure affects the overall behavior of a material (see, e.g., [8, 10]). The mathematical literature on
the topic is too vast for an exhaustive list, and thus we limit ourselves to mention here some examples
where it has been successfully applied: from thin structures (see, for instance, [6, 11, 14, 29]), to phase
separation (see, for instance, [16, 17, 18]), and from micromagnetism (see [3, 15, 20, 21]) to supremal
functionals (see [13, 22]).

The prototypical example is a family of functionals Fε : L
p(Ω;RM ) → R∪{+∞}, for p ∈ (1,∞), with

ε > 0 being the length scale characterizing the fine structure, of the form

Fε(u) :=


ˆ
Ω

W
(x
ε
,∇u(x)

)
dx if u ∈W 1,p

0 (Ω;RM ),

+∞ else.

The first variable of the energy density W accounts for the presence of a periodic microstructure, which
is reflected in requiring that W (·, ξ) is a periodic function. The variational investigation of the periodic
homogenization goes back to the end of Seventies. In [26], the limiting functional Fhom of Fε has been
fully characterized in the scalar case, i.e. M = 1, and under the assumptions of convexity and of p-growth
of W (x, ·). The Γ-limit Fhom : Lp(Ω) → R ∪ {+∞} is given by

Fhom(u) :=


ˆ
Ω

Whom (∇u(x)) dx if u ∈W 1,p
0 (Ω),

+∞ else,
(1.1)

with the effective energy density Whom : RN → R being characterized through the so-called cell formula

Whom(ξ) := inf

{ˆ
[0,1)N

W (y, ξ +∇u(x)) : u ∈W 1,p
0 ([0, 1)N )

}
. (1.2)

Removing the assumption of convexity and in the vectorial framework, the analysis of the Γ-limit has been
carried out independently in [9] and [27]. In this case, the limiting energy Fhom : Lp(Ω;RM ) → R∪{+∞}
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is again of the form (1.1) but the homogenized energy density Whom : RM×N → R is characterized by
the asymptotic cell formula

Whom(Ξ) := lim
k→∞

1

kN
inf

{ˆ
[0,k)N

W (y,Ξ +∇u(x)) : u ∈W 1,p
0 ([0, k)N ;RM )

}
. (1.3)

It is worth noticing that in the scalar setting and assuming the convexity of W in the second variable,
formula (1.3) turns into (1.2) (see [27, Lemma 4.1]).

The aim of the present paper is to undertake a first-order analysis of a suitable version functional Fε

via Γ-convergence. We focus on quadratic energies Fε : L
2(Ω) → R ∪ {+∞} of the form

Fε(u) :=


ˆ
Ω

A
(x
ε

)
∇u(x) · ∇u(x) dx−

ˆ
Ω

f(x)u(x) dx if u ∈ H1
0 (Ω),

+∞ else,

where Ω ⊂ RN is a bounded open set, f ∈ L2(Ω) and A : Ω → RN×N is a matrix-valued function in
L∞ that is [0, 1)N -periodic, symmetric and with lower and upper quadratic bounds. To identify the
contribution of the bulk in the first-order limit, we mimic the approach deployed by Allaire and Amar in
[2] assuming that

Ω := [0, 1)N and ε =
1

n
, with n ∈ N \ {0}.

This allows us to get rid of the first type of boundary effect. To tackle the second issue with boundary
effect, we restrict the admissible class for the source term f (see Section 2.2 for further details). Using the
asymptotic expansion of functionals given in [4] in terms of Γ-convergence, we consider the functionals
F 1
ε : L2(Ω) → R ∪ {+∞} defined as

F 1
ε (u) :=

Fε(u)−minH1
0 (Ω) Fhom

ε
.

The principal result of the present manuscript is the identification of the scale ε above as well as the
Γ-limit of F 1

ε (see Theorem 2.7). The main novelty lies in the use of the dual correspondence between
quadratic functionals and PDEs. To the best of the authors’ knowledge, this is the first time that these
two theories are combined together to get a variational result.

We briefly outline the strategy we employ. The unique minimizer of Fε turns out to be the unique
solution of the following elliptic problem with Dirichlet boundary conditions−div

(
A
(x
ε

)
∇uε(x)

)
= f(x) in Ω,

uε(x) = 0 on ∂Ω.

The investigation of such an elliptic problem has been broadly carried out by many authors, [1, 7, 25] to
name a few (see [8] for an extensive review on the topic). To get a homogenized equation, the classical
strategy relies on the two-scale expansion developed in [1, 28] of the solution uε :

uε(x) = u0(x) + εu1

(
x,
x

ε

)
+ . . . , (1.4)

where u0 is the solution of the homogenized equation given by{
−div (Ahom∇u0(x)) = f(x) in Ω,

u0(x) = 0 on ∂Ω,

where Ahom is defined through the cell formula (1.2) with W (y, ξ+∇u) = A(y)(ξ+∇u(x)) · (ξ+∇u(x)).
Moreover, the function u1 is defined through the first-order correctors (see Section 3 for the precise
definition). One would be tempted to use the ansatz (1.4) in the variational analysis for the functional
F 1
ε to deduce the limiting energy. However, this idea does not work out. The reason is that the following

estimate ∥∥∥uε − u0 − εu1

(
·, ·
ε

)∥∥∥
H1(Ω)

≤ C
√
ε
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turns out to be sharp (see, e.g., [7]). This surprising result suggests the presence of another phenomenon,
known as boundary layers. They are further first-order corrections needed to match the boundary con-
ditions (see [2, 5, 24]). Due to the high oscillatory nature of these functions, their energy contribution is
not clearly quantifiable with respect to the parameter ε. This is what we have referred to as the second
type of boundary effect. In order to avoid this high oscillatory behavior at the boundary, we essentially
consider the case where the function uε is compactly supported in Ω by requiring the source term f to
be in a specific class (see Assumption (H5) in Section 2.2). This enables us to get the first-order Γ-limit
by using the ansatz in (1.4) together with a refinement of the classical Riemann-Lebesgue Lemma (see
Proposition 4.3).

Finally, we show that the first-order Γ-convergence analysis is not needed when the functional Fε only
depends on the function u and not on its gradient ∇u (see Theorem 2.12). Indeed, in such a case, we
have that the value of the minimum of the functional Fε is the same as the one of Fhom. This implies
that the expansion by Γ-convergence does not provide additional information on the minimizers of the
functional Fε.

The paper is organized as follows. In Section 2 we specify the set-up of the problem. The preliminaries
and the technical results are given in Section 3 and Section 4, respectively We then turn to the proofs
of the main result: in Section 5 we provide the compactness, while Section 6 and Section 7 are devoted
to the lower and upper bound, respectively. Finally, Section 8 is devoted to the proof of the first-order
homogenization for functionals in Lp, for p ∈ (1,∞).

2. Set-up of the problem and main result

2.1. Basic notation. Here we collect the basic notation we are going to use throughout the manuscript.
Let Y ⊂ RN be a periodicity cell, namely

Y =

{
N∑
i=1

λivi : 0 < λi < 1,

N∑
i=1

λi = 1

}
,

where v1, . . . , vN is a basis of RN . Without loss of generality, up to a translation, we can even assume
that Y has its baricenter at the origin. This assumption is just to simplify the writing of the main result.
The space H1

per(Y ) is the subset of H1(Y ) of functions with periodic boundary conditions. More precisely,

u ∈ H1(Y ) if and only if the function ũ : RN → R defined as ũ(y) := u(ỹ) belongs to H1
loc(RN ), where

y =

N∑
i=1

λivi, ỹ :=

N∑
i=1

{λi}vi,

and {λi} := λi − ⌊λi⌋.
Given a function f , the notation fε stands for fε(x) := f(x/ε). Moreover, we denote by ∂i the i

th partial
derivative operator with respect to the variable x, and by ∂yi the ith partial derivative operator with
respect to the variable y. In particular, we have that

∂if
ε(x) =

1

ε
∂yif

ε(x).

Finally, the symbol ⟨·⟩Y denotes the average over Y , i.e.,

⟨f⟩Y :=
1

|Y |

ˆ
Y

f(y) dy,

with |Y | being the N -dimensional Lebesgue measure of Y .

2.2. Main result. Let Ω ⊂ RN be an open, bounded set, and let f ∈ L2(Ω). Let A : RN → RN×N be a
matrix-valued function in L∞ such that

(H1) A is Y -periodic;
(H2) A is symmetric, i.e., aij(y) = aji(y);
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(H3) there exist two positive constants α, β such that

α|ξ|2 ≤ A(y)ξ · ξ ≤ β|ξ|2,
for all ξ ∈ RN .

For ε > 0, let Fε : L
2(Ω) → R ∪ {+∞} be the functional defined as

Fε(u) :=

ˆ
Ω

Aε (x)∇u(x) · ∇u(x) dx−
ˆ
Ω

f(x)u(x) dx,

if u ∈ H1
0 (Ω), and as Fε(u) := +∞ otherwise in L2(Ω).

Under Assumptions (H1)-(H3), we know (see, for instance, [26], [27, Theorem 1.3], or [19, Corollary
24.5]) that {Fε}ε Γ-converges with respect to the weak topology of H1(Ω), or equivalently the strong
topology of L2(Ω), to the effective functional F 0

hom : L2(Ω) → R ∪ {+∞} given by

F 0
hom(u) :=

ˆ
Ω

Ahom∇u(x) · ∇u(x) dx−
ˆ
Ω

f(x)u(x) dx,

if u ∈ H1
0 (Ω), and by F 0

hom(u) := +∞ otherwise in L2(Ω). Here, the effective matrix Ahom is a constant
matrix given by the cell-formula

Ahomξ · ξ := inf

{ˆ
Y

A(y)(ξ +∇ϕ(y)) · (ξ +∇ϕ(y)) dy : ϕ ∈ H1
per(Y )

}
. (2.1)

We refer to this Γ-convergence result as the zeroth-order term in the expansion by Γ-convergence of Fε.
For our analysis, we need to recall the following. Using the fact that the functional in (2.1) is quadratic,
for each ξ ∈ RN , the minimization problem defining Ahomξ · ξ has a unique solution (up to an additive
constant), denoted by ψξ.

Definition 2.1. Let e1, . . . , eN be the standard orthonormal basis of RN . For each i = 1, . . . , N , let
ψi ∈ H1

per(Y ) be the unique solution to

inf

{ˆ
Y

A(y)(ei +∇ϕ(y)) · (ei +∇ϕ(y)) dy : ϕ ∈ H1
per(Y ),

ˆ
Y

φ(y) dy = 0

}
.

The function ψi is called the first-order corrector for A associated to the vector ei.

Remark 2.2. It turns out that the map ξ 7→ ψξ is linear (see [19, Example 25.5]). Namely,

ψξ =

N∑
i=1

ψiξi,

where ξ = (ξ1, . . . , ξN ). Therefore, the knowledge of the first-order correctors for A is sufficient to obtain
Ahom.

The goal of this paper is to develop further the expansion by Γ-convergence of Fε (see [4] for further
details). As explained in the Introduction, there are two issues with boundary effects in obtaining such
a result. Thus, in order to carry out our analysis, we need to assume the following

(H4) Ω := Y and we take the sequence εn = 1
n , with n ∈ N \ {0};

(H5) It holds that
f = −div(Ahom∇g),

for some g ∈ C∞
c (Y ).

Assumption (H4) is to ensure that Ω can be obtained as a disjoint union of copies of rescaled versions of
the periodicity cell Y . On the other hand, assumption (H5) is in order to avoid using boundary layers,
which have two main issues: they do not have a variational definition, and their contribution to the
energy is not clearly quantifiable in terms of the parameter ε, which prevents us from getting an order of
the energy. From now on, recalling assumption (H4), we will denote by Fn the functional Fεn .

We are now in position to write the asymptotic expansion through Γ-convergence we will study.
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Definition 2.3. For n ∈ N \ {0}, we define the functional F 1
n : L2(Ω) → R ∪ {+∞} as

F 1
n(u) :=

Fn(u)−minH1
0 (Ω) F

0
hom

εn
. (2.2)

Remark 2.4. Note that, using standard estimates (see the proof of Proposition 5.1), it is possible to
prove that, for each n ∈ N \ {0}, the minimization problem

min
u∈H1

0 (Ω)
Fn(u)

admits a unique solution umin
n ∈ H1(Ω). In a similar way, it is possible to prove that the minimization

problem
min

u∈H1
0 (Ω)

F 0
hom(u)

admits a unique minimizer umin
0 ∈ H1(Ω). In particular, we have that

F 1
n(u) =

Fn(u)− F 0
hom(u

min
0 )

εn
.

Moreover, the Γ-convergence of Fn to F 0
hom together with the compactness of {umin

n }n yields that umin
n →

umin
0 in L2(Ω) as n→ ∞.

Remark 2.5. Note that assumption (H5) implies that umin
0 = g. In particular, umin

0 ∈ C∞
c (Ω).

Our goal is to study the Γ-limit of the family of functionals {F 1
n}n. To this end, we introduce the

candidate limiting functional.

Definition 2.6. Define the functional F 1
hom : L2(Ω) → R ∪ {+∞} as

F 1
hom(u) :=

N∑
i,j=1

ˆ
Ω

∇(∂iu
min
0 ∂ju

min
0 )(x) dx · ⟨y [aij + 2Aej · ∇ψi +A∇ψi · ∇ψj ]⟩Y

+ 2

N∑
i=1

ˆ
Ω

⟨ψiA⟩Y ∇umin
0 (x) · ∂iumin

0 (x) dx

+ 2

N∑
j=1

N∑
i=1

ˆ
Ω

∂ju
min
0 (x)⟨ψiA∇yψj⟩Y · ∂i∇umin

0 (x) dx

−
N∑
j=1

⟨ψj⟩Y
ˆ
Ω

f(x)∂ju
min
0 (x) dx (2.3)

if u = umin
0 , and +∞ else in L2(Ω). Here, ψi are the first-order correctors defined in Definition 2.1.

We now state the main result of the present paper.

Theorem 2.7. Let F 1
n and F 1

hom be the functionals given by (2.2) and (2.3), respectively. Assume that
Assumptions (H1)-(H5) hold. Then, we have the following:

(i) Let {un}n be a sequence in H1(Ω) such that supn F
1
n(un) <∞. Then, {un}n converges in L2(Ω)

to umin
0 , where umin

0 is the unique minimizer of F 0
hom.

(ii) The sequence {F 1
n}n Γ-converges with respect to L2(Ω) topology to F 1

hom.

It is worth noticing that the above result can be read as follows: in the bulk, the order of the energy
Fn is εn, and the normalized difference from minF 0

hom is given by the (constant) functional F 1
hom.

We show that the analogous first-order Γ-expansion is trivial in the case of functionals defined on Lp.
We are able to prove this statement in a more general setting than that considered above. Fix p ∈ (1,∞)
and M ≥ 1. Let V : Ω× RM → R be a Carathéodory function such that

(A1) For each z ∈ RM , the function x 7→ V (x, z) is Y -periodic;
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(A2) There exists 0 < c1 < c2 < +∞ such that

c1(|z|p − 1) ≤ V (x, z) ≤ c2(|z|p + 1),

for all x ∈ Ω and z ∈ RM .

Note that in this case the source term would only be a part of the function V . That is why there is
no analogue of assumption (H5).

Definition 2.8. For n ∈ N \ {0}, define Gn : Lp(Ω;RM ) → R ∪ {+∞} as

Gn(u) :=

ˆ
Ω

V

(
x

εn
, u(x)

)
dx.

Remark 2.9. Note that there is no loss of generality in assuming the function V to be convex in the
second variable. Indeed, the relaxation of Gn with respect to the weak-Lp(Ω) topology is given by

Gn(u) =

ˆ
Ω

V c

(
x

εn
, u(x)

)
dx

where V c denotes the convex envelope of the function V in the second variable.

We now introduce the homogenized functional.

Definition 2.10. For z ∈ RM , let

Vhom(z) := inf

{
1

|Y |

ˆ
Y

V c(y, z + φ(y)) dy : φ ∈ Lp(Y ;RM ),

ˆ
Y

φ(y) dy = 0

}
.

Define the functional Ghom : Lp(Ω;RM ) → R ∪ {+∞} as

Ghom :=

ˆ
Ω

Vhom(u(x)) dx.

Using the same arguments as in the proof of [17, Theorem 3.3], we get the following.

Lemma 2.11. Assume that Assumptions (A1)-(A2) hold. Then, Gn → Ghom with respect to the weak-
Lp(Ω) topology.

Next result justifies our claim that the Γ-expansion is trivial in such a case.

Theorem 2.12. Assume that Assumptions (A1)-(A2), as well as (H4) hold and that, for all y ∈ Y , the
function u 7→ V (y, u) is strictly convex. Let m ∈ RM . Then,

min

{
Gn(v) : v ∈ Lp(Ω;RM ),

ˆ
Ω

u(x) dx = m

}
= min

{
Ghom(v) : v ∈ Lp(Ω;RM ),

ˆ
Ω

u(x) dx = m

}
,

for all n ∈ N \ {0}.

Remark 2.13. The assumption of strict convexity is needed only to simplify the strategy of the proof,
since we need to invert the relation

∂uV (x, v) = c.

Strict convexity gives us a unique inverse, while with convexity alone we would have to get a slightly
more involved argument. Since this result is to show that for these functionals there is no need to a first
order Γ-expansion, we decided to use this extra technical assumption.

Remark 2.14. Note that, in this case, boundary conditions are not natural. This is why we consider a
mass constraint instead.
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3. Preliminaries

3.1. Recall of homogenization. We recall the foundations of the homogenization theory for elliptic
equations. Even if this theory is classical by now, we revisit it since we will use a slightly different
definition of the correctors than that in [2, 7].
Let Ω be a bounded and open subset of RN . Let A be the matrix-valued function satisfying Assumptions
(H1)-(H3). For a given f ∈ L2(Ω), we consider the following equation{

−div(Aε(x)∇uε(x)) = f(x) in Ω,

uε(x) = 0 on ∂Ω.
(3.1)

It is well-known that this problem admits a unique solution in H1
0 (Ω) (see, e.g., [7]). To carry out a

homogenization procedure, the solution uε is assumed to have the following two-scale expansion

uε(x) = u0

(
x,
x

ε

)
+ εu1

(
x,
x

ε

)
+ ε2u2

(
x,
x

ε

)
+ . . . ,

where each ui is Y -periodic with respect to the fast variable y = x
ε . The variables x and y are

treated as independent. Plugging such an expansion into (3.1) and identifying powers of ε, we get
a cascade of equations. Here, we only care about the second-order expansion. Therefore, setting
Aεϕ(x) := −div(Aε(x)∇ϕ(x)), we deduce that

Aε = ε−2A0 + ε−1A1 +A2,

where

A0 := −
N∑
i=1

∂yi

 N∑
j=1

aij(y)∂yj

 ,

A1 := −
N∑
i=1

∂yi

 N∑
j=1

aij(y)∂j

−
N∑
i=1

∂i

 N∑
j=1

aij(y)∂yj

 ,

A2 := −
N∑
i=1

∂i

 N∑
j=1

aij(y)∂j

 .

Using (3.1), matching powers of ε up to second order gives us the following equations

A0u0 = 0, (3.2)

A0u1 +A1u0 = 0, (3.3)

A0u2 +A1u1 +A2u0 = f, (3.4)

A0u3 +A1u3 +A2u1 = 0. (3.5)

From (3.2), it follows that u0(x, y) ≡ u0(x). The solution u1 to (3.3) is given by

u1

(
x,
x

ε

)
=

N∑
j=1

ψε
j (x) ∂ju0(x) + ũ1(x), (3.6)

where, for j = 1, . . . , N , ψj is the unique solution in H1
per(Y ) to the problem

A0ψj(y) =

N∑
i=1

∂yiaij(y) in Y,

ˆ
Y

ψj(y) dy = 0,

y 7→ ψj(y) Y -periodic.

(3.7)
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Namely, for j = 1, . . . , N , the function ψj are the first-order corrector defined in Definition 2.1. The
solution to equation (3.4) is given by

u2

(
x,
x

ε

)
=

N∑
i,j=1

χε
ij (x) ∂

2
iju0(x) +

N∑
j=1

ψε
j (x) ∂j ũ1(x) + ũ2(x), (3.8)

where for all i, j = 1, . . . , n, the second-order corrector χij ∈ H1
per(Y ) satisfies the following auxiliary

problem 
A0χij(y) = bij(y)−

ˆ
Y

bij(y) dy in Y,

ˆ
Y

χij(y) dy = 0,

y 7→ χij(y) Y -periodic,

(3.9)

with

bij(y) := aij(y) +

N∑
k=1

aik(y)∂yk
ψj(y) +

N∑
k=1

∂yk
(akiψj)(y). (3.10)

It is worth recalling that the function ũ1 in (3.6) can be taken identically equal to zero if one is only
interested in the first-order expansion of uε. Otherwise, ũ1 is determined by the compatibility condition
of equation (3.5), namely,

div(Ahom∇ũ1(x)) = −
N∑

i,j,k=1

cijk∂
3
ijku

min
0 (x), (3.11)

where Ahom is the homogenized matrix defined by (2.1) and for i, j, k = 1, . . . , N , the constant cijk is
defined as

cijk :=

〈
N∑
l=1

akl∂yl
χij + aijψk

〉
Y

. (3.12)

Since in the present paper, we are interested in expanding uε up to the second-order, the function ũ2 in
(3.8) can be taken identically equal to zero.

Remark 3.1. In the following, we will use the above theory for the function umin
0 in place of u0.

3.2. Periodic functions. We collect some useful properties of the space L2
per(Y ;RN ) of the periodic

functions (see [25, Chapter 1] for further details).
The space L2

sol(Y ) of solenoidal periodic functions is defined as

L2
sol(Y ) := {f ∈ L2

per(Y ;RN ) : divf = 0 in RN},
where the equality divf = 0 is to be intended in distributional sense, i.e.,ˆ

RN

f(x) · ∇φ(x) dx = 0, for any φ ∈ C∞
c (RN ).

The space L2
sol(Y ) turns out to be a closed subspace of L2(Y ;RN ). Setting

V2
pot(Y ) := {∇u : u ∈ H1

per(Y ;RN )},
we immediately deduce the following orthogonal representation

L2
per(Y ;RN ) = L2

sol(Y )⊕ V2
pot(Y ).

The next proposition provides a representation of solenoidal functions, which will be a key tool in Propo-
sition 4.9.

Proposition 3.2. Let f ∈ L2
sol(Y ). Then, f = (f1, . . . , fN ) can be represented in the form

fj(x) = ⟨fj⟩Y +

N∑
i=1

∂iαij(x), for all j = 1, . . . , N,

where αij ∈ H1(Y ) is such that αij = −αji and ⟨αij⟩Y = 0, for all i, j = 1, . . . , N .



FIRST-ORDER HOMOGENIZATION 9

Proof. Without loss of generality, we can assume that Y = [0, 2π)N . Using the Fourier series of f , we
have that

f = ⟨f⟩Y +
∑
k∈ZN

k ̸=0

fkeik·x,

where fk is the Fourier coefficient of f . We claim that fk · k = 0, for each k ∈ ZN . Indeed, for fixed
k ∈ ZN \ {0}, we can decompose fk as fk = Ck

1 k +Ck
2 v, for some constants Ck

1 , C
k
2 and v ∈ (span(k))⊥.

Therefore,

f = ⟨f⟩Y +
∑
k∈ZN

k ̸=0

Ck
1 ke

ik·x +
∑
k∈ZN

k ̸=0

Ck
2 ve

ik·x.

Noticing that ikeik·x = ∇(eik·x) ∈ V2
pot(Y ) and since by assumption, we know that f ∈ L2

sol(Y ), we obtain

that Ck
1 = 0, for any k ∈ ZN \ {0}. This leads us to conclude that fk · k = 0, and that Ck

2 v = fk.
Therefore,

fk = fk − fk · k
|k|2

k,

which writes, component-wise, as

fkj =

N∑
i=1

gkijki, with gij :=
fkj ki − fki kj

|k|2
.

Therefore, for each j = 1, . . . , N , we get that

fj = ⟨fj⟩Y +
∑
k∈ZN

k ̸=0

fkj e
ik·x = ⟨fj⟩Y +

∑
k∈ZN

k ̸=0

N∑
i=1

gkijkie
ik·x = ⟨fj⟩Y +

N∑
i=1

∑
k∈ZN

k ̸=0

gkijkie
ik·x.

Thus, by defining

αij(x) := −i
∑
k∈ZN

k ̸=0

gkije
ik·x,

we get the desired result. □

4. Technical lemmata

4.1. First order Riemann-Lebesgue Lemma. We prove a quantitative version of the Riemann-
Lebesgue Lemma. Since we will use this latter result several times, we recall it in here for the reader’s
convenience.

Lemma 4.1 (Riemann-Lebesgue Lemma). Let p ∈ [1,∞), and let Ω ⊂ RN be an open bounded set. Let
g ∈ Lp(RN ) be an Y -periodic function. Then,

lim
n→∞

ˆ
Ω

g(nx)φ(x) dx = ⟨g⟩Y
ˆ
Ω

φ(x) dx,

for all φ ∈ Lp′
(Ω), with 1

p + 1
p′ = 1.

Remark 4.2. The above result holds also for p = +∞, but in that case we need the test function
φ ∈ L1(Ω).

The refined result requires more stringent assumptions. Nevertheless, we will later show how to relax
some of them.

Proposition 4.3 (First order Riemann-Lebesgue Lemma). Let p ∈ [1,∞), and let g ∈ Lp(RN ) be an
Y -periodic function. Let Ω ⊂ RN be an open bounded set such that, up to a set of Lebesgue measure zero,
can be written as

Ω =

k⋃
i=1

(xi + Y ), xi ∈ ZN , (xi + Y ) ∩ (xj + Y ) = ∅ if i ̸= j. (4.1)
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Then,

lim
n→∞

n

[ˆ
Ω

g(nx)φ(x) dx− ⟨g⟩Y
ˆ
Ω

φ(x) dx

]
=

ˆ
Ω

∇φ(x) dx · [⟨yg⟩Y − ⟨y⟩Y ⟨g⟩Y ] ,

for all φ ∈ C2(Ω) ∩ C(Ω).

Proof. Let {zi}i be an enumeration of ZN . For each n ∈ N \ {0}, let

In :=

{
i ∈ N :

1

n
(zi + Y ) ⊂ Ω

}
.

Note that, by (4.1), we get that (up to a set of Lebesgue measure zero)

Ω =
⋃
i∈In

1

n
(zi + Y )

being a disjoint union. Moreover, the cardinality of In is nN |Ω|/|Y |. Recall that, by periodicity of g, we
have that g(zi + y) = g(y) for all zi ∈ ZN . Then,ˆ

Ω

g(nx)φ(x) dx− 1

|Y |

ˆ
Y

g(y) dy

ˆ
Ω

φ(x) dx

=
∑
i∈In

1

nN

[ˆ
Y

g(zi + y)φ

(
zi + y

n

)
dy − 1

|Y |

ˆ
Y

φ

(
zi + y

n

)
dy

ˆ
Y

g(y) dy

]
=
∑
i∈In

1

nN

[ˆ
Y

g(y)

[
φ

(
zi + y

n

)
− φ

(zi
n

)]
dy − 1

|Y |

ˆ
Y

[
φ

(
zi + y

n

)
− φ

(zi
n

)]
dy

ˆ
Y

g(y) dy

]
.

We now use a second-order Taylor expansion for φ to write

φ

(
zi + y

n

)
− φ

(zi
n

)
=

1

n
∇φ

(zi
n

)
· y + 1

2n2
Hφ

(zi
n

)
[y, y] + o

(
1

n2

)
,

where Hφ(x) denotes the Hessian matrix of φ at x. Thus, we get thatˆ
Ω

g(nx)φ(x) dx− 1

|Y |

ˆ
Y

g(y) dy

ˆ
Y

φ(x) dx

=
1

n

∑
i∈In

1

nN
∇φ

(zi
n

)
·
[ˆ

Y

g(y)y dy − 1

|Y |

ˆ
Y

y dy

ˆ
Y

g(y) dy

]
+O

(
1

n2

)
.

Sending n→ ∞, and noting that ∑
i∈In

|Y | 1

nN
∇φ

(zi
n

)
is the Riemann sum for the integral of ∇φ over Ω, gives the desired result. □

Remark 4.4. Note that the above result is invariant under translation of the periodicity grid and of
the function g. In particular, there is no loss of generality in assuming that ⟨y⟩Y = 0, namely that the
barycenter of the periodicity cell is at the origin.

Remark 4.5. In particular, the above result implies that

lim
n→∞

n

[ˆ
Ω

g(nx)φ(x) dx− ⟨g⟩Y
ˆ
Ω

φ(x) dx

]
= 0,

for each Y -periodic function φ ∈ C2(RN ).

Finally, we present some extensions of the above result. Their proofs follow the same argument used
above, and therefore we will not repeat them in here.

The first extension uses the fact that, in dimension N ≥ 3, given a general open set Ω ⊂ RN with
Lipschitz boundary (or even whose boundary has finite HN−1 measure), the contribution of the cubes
(zi + Y )/n that intersect the boundary of Ω is of order n1−N ≪ n−1.
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Proposition 4.6. Let N ≥ 3, and let Ω ⊂ RN be an open set with Lipschitz boundary. Let p ∈ [1,∞),
and let g ∈ Lp(RN ) be an Y -periodic function. Then,

lim
n→∞

n

[ˆ
Ω

g(nx)φ(x) dx− ⟨g⟩Y
ˆ
Ω

φ(x) dx

]
=

ˆ
Ω

∇φ(x) dx · [⟨yg⟩Y − ⟨y⟩Y ⟨g⟩Y ] ,

for all φ ∈ C2(Ω) ∩ C(Ω).

Remark 4.7. Note that, in dimension N = 2, the contribution of the terms at the boundary of Ω is of
the order n−1. It is therefore, in general, not possible to estimate this term.

Finally, we can extend the above result to the nonlinear case.

Proposition 4.8. Let p ∈ [1,∞). Let V : RN × R → R be a Carathéodory function that is Y -periodic
in the second variable, and such that t 7→ V (x, t) is of class C2 for all x ∈ RN . Assume that (4.1) hold.
Then,

lim
n→∞

n

[ˆ
Ω

V (nx, φ(x)) dx−
ˆ
Ω

< V (·, φ(x) >Y dx

]
=

ˆ
Ω

1

|Y |

ˆ
Y

∂tV (y, φ(x))∇φ(x) · y dy dx− 1

|Y |2

ˆ
Ω

ˆ
Y

ˆ
Y

∂tV (z, φ(x))∇φ(x) · y dz dy dx,

for all φ ∈ C2(Ω) ∩ C(Ω).

4.2. Estimates. In this section we prove the fundamental estimate that allows us to consider the ‘sur-
rogate’ sequence given by the expansion with first and second-order correctors in place of the minimizer
umin
ε . Recall that umin

0 ∈ C∞
c (Ω) (see Remark 2.5).

Proposition 4.9. Let u
(2)
ε be the function defined as

u(2)ε (x, y) := umin
0 (x) + εu1 (x, y) + ε2u2 (x, y) , (4.2)

with u1 and u2 being defined as in (3.6) and (3.8), respectively. Then, it holds that

∥div(Aε∇u(2)ε )− div(Ahom∇umin
0 )∥H−1(Ω) ≤ Cε2,

for some C < +∞.

Proof. First, note that

div(Aε(x)∇u(2)(x)ε −Ahom∇umin
0 (x)) =

N∑
i=1

∂i

(
(Aε(x)∇u(2)ε (x)−Ahom∇umin

0 (x))i

)
,

where, for i = 1, . . . , N , the i-th component (Aε(x)∇u(2)ε (x)−Ahom∇umin
0 (x))i is given by

(Aε(x)∇u(2)ε (x)−Ahom∇umin
0 (x))i = Pi,ε(x) + εQi,ε(x) + ε2Ri,ε(x), (4.3)

with

Pi,ε(x) :=

N∑
j=1

aεij(x)∂ju
min
0 (x) +

N∑
j,k=1

aεik(x)∂yk
ψε
j (x)∂ju

min
0 (x)−

N∑
j=1

ahomij ∂ju
min
0 (x),

Qi,ε(x) :=

N∑
j,k=1

ψε
j (x)a

ε
ik(x)∂

2
kju

min
0 (x) +

N∑
k,j,l=1

aεil(x)∂yl
χε
kj(x)∂

2
kju

min
0 (x) +

N∑
j=1

aεij(x)∂j ũ1(x)

+

N∑
j,k=1

aεik(x)∂yk
ψε
j (x)∂j ũ1(x), (4.4)

Ri,ε(x) :=

N∑
k,j,l=1

χε
kj(x)a

ε
il(x)∂

3
lkju

min
0 (x) +

N∑
j,k=1

ψε
j (x)a

ε
ik(x)∂

2
kj ũ1(x).
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We now estimate the above terms, starting from Pi,ε(x). Note that Pi,ε(x) rewrites as

Pi,ε(x) =

N∑
j=1

gj,εi (x)∂ju
min
0 (x), for all i = 1, . . . , N,

where gji is defined as

gji (y) := aij(y) +

N∑
k=1

aik(y)∂yk
ψj(y)− ahomij , for all i, j = 1, · · · , N.

For fixed j = 1, . . . , N , set Gj := (g1i , . . . , g
N
i ). We have that Gj ∈ L2

sol(Y ). Indeed, thanks to problem
(3.7) satisfied by ψj , it follows that

div Gj(y) =

N∑
i=1

∂yig
j
i (y) = 0.

Therefore, by applying Proposition 3.2, the components of Gj are represented by

gji (y) =

N∑
k=1

∂yk
αj
ik(y). (4.5)

Note that ⟨gji ⟩Y = 0, since

ahomij =

〈
aij(y) +

N∑
k=1

aik(y)∂yk
ψj(y)

〉
Y

. (4.6)

Using the representation (4.5) as well as the Leibniz rule, we get that

Pi,ε(x) =

N∑
j,k=1

∂yk
αj,ε
ik (x)∂ju

min
0 (x)

= ε

 N∑
j,k=1

∂k(α
j,ε
ik ∂ju

min
0 )(x)−

N∑
j,k=1

αj,ε
ik (x)∂2kju

min
0 (x)

 .

Hence, (4.3) turns into

(Aε(x)∇u(2)ε (x)−Ahom∇umin
0 (x))i = ε

 N∑
j,k=1

∂k(α
j,ε
ik ∂ju

min
0 )(x) + Q̃i,ε(x)

+ ε2Ri,ε(x), (4.7)

where

Q̃i,ε(x) := Qi,ε(x)−
N∑

j,k=1

αj,ε
ik (x)∂2kju

min
0 (x),

with Qi,ε being defined as in (4.4). We now estimate Q̃i,ε(x). As for Pi,ε, Q̃i,ε(x) can be rewritten as

Q̃i,ε(x) =

N∑
j,k=1

hjk,εi (x)∂2kju
min
0 (x) +

N∑
j=1

tj,εi (x)∂j ũ1(x), for all i = 1, . . . , N, (4.8)

where for any fixed j, k = 1, . . . , N , the functions hkji and tji are defined as

hkji (y) := ψj(y)aik(y) +

N∑
l=1

ail(y)∂yl
χkj(y)− αj

ik(y), (4.9)

tji (y) := aij(y) +

N∑
k=1

aik(y)∂yk
ψj(y). (4.10)
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We claim that Hkj := (hkj1 , . . . , h
kj
N ) as well as T j := (tj1, . . . , t

j
N ) belong to L2

sol(Y ). Indeed, bearing in
mind that χε

kj is the solution to (3.9) together with the fact that

N∑
i=1

∂yi
(−αj

ik) =

N∑
i=1

∂yi
(αj

ki) = gjk,

we deduce that for fixed j, k = 1, . . . , N ,

div(Hkj) =

N∑
i=1

∂yi
hkji (y) =

N∑
i=1

∂yi
(ψε

ja
ε
ik)(y) +

N∑
i=1

∂yi

(
N∑
l=1

ail∂lχkj

)
(y) +

N∑
i=1

∂yi
(−αj

ik)(y)

=

N∑
i=1

∂yi
(ψj(y)aik(y))− bkj(y) +

ˆ
Y

bkjdy + gjk(y) = 0,

where we have used the equality ahomkj = ⟨bkj⟩Y (cf. (3.10) and (4.6)). Likewise, since ψj is the solution

to (3.7), we immediately conclude that

div(T j) =

N∑
i=1

∂yi
tji (y) =

N∑
i=1

∂yi

(
aij(y) +

N∑
k=1

aik(y)∂yk
ψj(y)

)
= 0.

Therefore, applying Proposition 3.2, it follows that the components of Hkj and T j are represented by

hkji (y) = ⟨hkji ⟩Y +

N∑
l=1

∂yl
βkj
il (y) and tji (y) = ⟨tji ⟩Y +

N∑
k=1

∂yk
γjik(y),

for all i = 1, . . . , N . This implies that

Q̃i,ε(x) =

N∑
j,k=1

⟨hkji ⟩Y ∂2kjumin
0 (x) +

N∑
j,k,l=1

∂yl
βkj,ε
il (x)∂2kju

min
0 (x)

+

N∑
j=1

⟨tji ⟩Y ∂j ũ1(x) +
N∑

j,k=1

N∑
k=1

∂yk
γj,εik (x)∂j ũ1(x)

=

N∑
j,k=1

⟨hkji ⟩Y ∂2kjumin
0 (x) +

N∑
j=1

⟨tji ⟩Y ∂j ũ1(x)

+ ε

( N∑
j,k,l=1

∂l(β
kj,ε
il ∂2kju

min
0 )(x)−

N∑
j,k,l=1

βkj,ε
il (x)∂3lkju

min
0 (x)

+

N∑
j,k=1

∂i(γ
j,ε
ik ∂j ũ1)(x)−

N∑
j,k=1

γj,εik (x)∂2kj ũ1)(x)

)
From (4.3) together with (4.7), we conclude that

(Aε(x)∇u(2)ε (x)−Ahom∇umin
0 (x))i = ε

 N∑
j,k=1

∂k(α
j,ε
ik ∂ju

min
0 )(x) +

N∑
j,k=1

⟨hkji ⟩Y ∂2kjumin
0 (x) +

N∑
j=1

⟨tji ⟩Y ∂j ũ1(x)


+ ε2

 N∑
j,k,l=1

∂l(β
kj,ε
il ∂2kju

min
0 )(x) +

N∑
j,k=1

∂i(γ
j,ε
ik ∂j ũ1)(x) + R̃i,ε(x)

 ,

where R̃i,ε(x) is defined as

R̃i,ε(x) := Ri,ε(x)−
N∑

j,k,l=1

βkj,ε
il (x)∂3lkju

min
0 (x)−

N∑
j,k=1

γj,εik (x)∂2kj ũ1(x).
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Noticing that ⟨hkji ⟩Y = cijk (cf. (3.12) and (4.9)) and ⟨tji ⟩Y = ahomij (cf. (4.6) and (4.10)) as well as
bearing in mind problem (3.11), we obtain that

N∑
i=1

∂i

 N∑
j,k=1

⟨hkji ⟩Y ∂2kjumin
0 (x) +

N∑
j=1

⟨tji ⟩Y ∂j ũ1(x)

 = 0.

Moreover, since αj
ik = −αj

ki, it follows that

N∑
i=1

∂i

 N∑
j,k=1

∂k(α
j,ε
ik ∂ju

min
0 )(x)

 = 0.

Likewise, since βkj
il = −βkj

li and γjik = −γjki,
N∑
i=1

∂i

 N∑
j,k,l=1

∂l(β
kj,ε
il ∂2kju

min
0 )(x)

 =

N∑
i=1

∂i

 N∑
j,k=1

∂i(γ
j,ε
ik ∂j ũ1)(x)

 = 0.

Therefore,

div(Aε(x)∇u(2)(x)ε −Ahom∇umin
0 (x)) = ε2div(R̃ε(x)),

with R̃ε = (R̃1,ε, . . . , R̃N,ε). Now,

∥div(Aε∇u(2)ε −Ahom∇umin
0 )∥H−1(Ω) = ∥divR̃ε∥H−1(Ω) ≤ ∥R̃ε∥L2(Ω) ≤ Cε2,

which concludes the proof. □

5. Compactness result in Theorem 2.7

In this section, we are going to prove a compactness result stated in Theorem 2.7(i).

Proposition 5.1. Let {εn}n be a sequence such that εn → 0 as n → ∞. Suppose that Assumptions
(H1)-(H3) hold. If {un}n ⊂ H1(Ω) is a sequence such that

sup
n
F 1
n(un) <∞,

then, {un}n converges to umin
0 ∈ H1(Ω) weakly in H1(Ω).

Proof. First, recall that thanks to Assumption (H3), the homogenized matrix Ahom satisfies the same
growth conditions with the same constants, i.e.,

α|ξ|2 ≤ Ahomξ · ξ ≤ β|ξ|2,

for all ξ ∈ RN . Let λ > 0 that will be fixed later. Note that

−ab ≥ − a2

2λ2
− λ2

2
b2, (5.1)

for all a, b ≥ 0. Let CΩ > 0 be the Poincaré constant of Ω, i.e. such that,

∥v∥L2(Ω) ≤ CΩ∥∇v∥L2(Ω;RN ), (5.2)

for all v ∈ H1
0 (Ω). Recall that if u ∈ L2(Ω) is such that Fn(u) < +∞, then u ∈ H1

0 (Ω). By using (H3),
(5.1) and (5.2), we get

Fn(u) ≥ α∥∇u∥2L2(Ω;RN ) −
λ2

2
∥u∥2L2(Ω) −

1

2λ2
∥f∥2L2(Ω)

≥
(
α− λ2

2
C2

Ω

)
∥∇u∥2L2(Ω;RN ) −

1

2λ2
∥f∥2L2(Ω).

Namely, (
α− λ2

2
C2

Ω

)
∥∇u∥2L2(Ω;RN ) ≤ Fn(u).
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Choosing

λ ∈

(
0,

√
2α

CΩ

)
,

yields that
∥∇u∥L2(Ω;RN ) ≤ C(Fn(u) + 1) ≤ C(F 1

n(u) + 1),

where the constant C > 0 changes all the times. Since u ∈ H1
0 (Ω), using the Poincaré inequality again,

we get that
∥u∥H1(Ω) < C(F 1

n(u) + 1).

Therefore, if {un}n∈N ⊂ L2(Ω) is such that

sup
n∈N

F 1
n(un) < +∞,

then, there exists a subsequence {unk
}k∈N such that unk

⇀ v weakly in H1(Ω), for some v ∈ H1(Ω).

We now prove that v = umin
0 . Assume by contradiction that v ̸= umin

0 . Since the minimizer umin
0 is

unique, it follows that
lim inf
k→∞

Fnk
(unk

) ≥ F 0
hom(v) > F 0

hom(u
min
0 ).

Thus,

lim
k→∞

F 1
nk
(unk

) = lim
k→∞

Fnk
(unk

)− F 0
hom(u

min
0 )

εnk

= +∞.

This gives the desired contradiction. Since the limit is unique, we also get that the full sequence converges.
□

Remark 5.2. Note that, in order to get compactness, we do not need to have Assumptions (H4) and
(H5) in force.

6. The liminf inequality for Theorem 2.7

In this section, we prove the lower bound of Theorem 2.7 (ii).

Proposition 6.1. Assume that Assumptions (H1)-(H5) hold. Then, for any sequence {un}n ⊂ L2(Ω)
converging to umin

0 with respect to L2(Ω) it holds that

lim inf
n→∞

F 1
n(un) ≥ F 1

hom(u
min
0 ).

Proof. Without lost of generality, we can assume that

lim inf
n→∞

F 1
n(un) <∞.

Let u
(2)
n be the function defined in (4.2). Then, it holds that

lim inf
n→∞

F 1
n(un) = lim inf

n→∞

Fn(un)− F 0
hom(u

min
0 )

εn

≥ lim inf
n→∞

Fn(u
min
n )− F 0

hom(u
min
0 )

εn

≥ lim inf
n→∞

Fn(u
min
n )− Fn(u

(2)
n )

εn
+ lim inf

n→∞

Fn(u
(2)
n )− F 0

hom(u
min
0 )

εn

= lim inf
n→∞

I1n + lim inf
n→∞

I2n + lim inf
n→∞

I3n,

where

I1n :=
Fn(u

min
n )− Fn(u

(2)
n )

εn
,

I2n :=
1

εn

[ˆ
Ω

Aεn(x)∇u(2)n (x) · ∇u(2)n (x) dx−
ˆ
Ω

Ahomu
min
0 (x) · umin

0 (x) dx

]
,
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and

I3n :=
1

εn

ˆ
Ω

f(x)(u(2)n (x)− umin
0 (x)) dx.

We now claim that
lim
n→∞

I1n = 0,

and that
lim
n→∞

(I2n + I3n) = F 1
hom(u

min
0 ).

These will give the desired result.

Step 1: limit of I1n. We have that

I1n =
1

εn

[ˆ
Ω

Aεn(x)∇u(2)n (x) · ∇u(2)n (x) dx−
ˆ
Ω

Aεn(x)∇umin
n (x) · ∇umin

n (x) dx

]
− 1

εn

ˆ
Ω

f(x)(u(2)n (x)− umin
n (x)) dx.

Writing u
(2)
n = umin

n + (u
(2)
n − umin

n ) gives

1

εn

∣∣∣∣ˆ
Ω

Aεn(x)∇u(2)n (x) · ∇u(2)n (x) dx−
ˆ
Ω

Aεn(x)∇umin
n (x) · ∇umin

n (x) dx

∣∣∣∣
=

1

εn

∣∣∣ˆ
Ω

Aεn(x)∇(u(2)n − umin
n )(x) · ∇(u(2)n − umin

n )(x) dx

+
2

εn

ˆ
Ω

Aεn(x)∇(u(2)n − umin
n )(x) · ∇u(2)n (x) dx

∣∣∣
≤ 1

εn

∥∥∥div (Aεn∇(u(2)n − umin
n )

)∥∥∥
H−1(Ω)

(
∥u(2)n − umin

n ∥H1
0 (Ω) + 2∥u(2)n ∥H1

0 (Ω)

)
≤ εn

(
∥umin

n ∥H1
0 (Ω) + 3∥u(2)n ∥H1

0 (Ω)

)
, (6.1)

where the last step follows from Proposition 4.9. Note that from (H3), together with the fact that

u
(2)
n − umin

n ∈ H1
0 (Ω), it holds that

α∥∇(u(2)n − umin
n )∥2L2(Ω) ≤

ˆ
Ω

Aεn(x)∇(u(2)n − umin
n )(x) · ∇(u(2)n − umin

n )(x) dx

≤ sup
φ∈H1

0 (Ω)

ˆ
Ω

Aεn(x)∇(u(2)n − umin
n )(x) · ∇φ(x) dx

=
∥∥∥div (Aεn∇(u(2)n − umin

n )
)∥∥∥

H−1(Ω)
∥u(2)n − umin

n ∥H1
0 (Ω)

≤ (1 + CΩ)
∥∥∥div (Aεn∇(u(2)n − umin

n )
)∥∥∥

H−1(Ω)
∥∇(u(2)n − umin

n )∥L2(Ω).

Therefore, calling CΩ the Poincaré constant of Ω, we obtain that∣∣∣∣ 1εn
ˆ
Ω

f(x)(u(2)n (x)− umin
n (x)) dx

∣∣∣∣ ≤ 1

εn
∥f∥L2(Ω)∥u(2)n − umin

n ∥L2(Ω)

≤ CΩ

εn
∥f∥L2(Ω)∥∇(u(2)n − umin

n )∥L2(Ω)

≤ (1 + CΩ)CΩ

αεn
∥f∥L2(Ω)

∥∥∥div (Aεn∇(u(2)n − umin
n )

)∥∥∥
H−1(Ω)

≤ (1 + CΩ)CΩ

α
∥f∥L2(Ω)εn, (6.2)

where the last step follows by Proposition 4.9. Since

sup
n

(
∥umin

n ∥H1
0 (Ω) + 3∥u(2)n ∥H1

0 (Ω)

)
<∞,
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from (6.1) and (6.2), we get the desired result.

Step 2: limit of I2n. Note that

∇u(2)εn (x) = ∇

(
umin
0 (x) + εn

N∑
i=1

ψεn
i (x)∂iu

min
0 (x) + εn

2
N∑

r,s=1

χεn
rs (x)∂

2
rsu

min
0 (x)− εn

2
N∑
l=1

ψεn
l (x)∂lũ1(x)

)

= ∇umin
0 (x) +

n∑
i=1

∇yψ
εn
i (x)∂iu

min
0 (x)

+ εn

[
N∑
i=1

ψεn
i (x)∇(∂iu

min
0 (x)) +

N∑
r,s=1

∇y(χ
εn
rs (x))∂

2
rsu

min
0 (x)−

N∑
l=1

∇y(ψ
εn
l (x))∂lũ1(x)

]
+ o(εn).

Therefore, ˆ
Ω

Aεn(x)∇u(2)εn (x) · ∇u(2)εn (x) dx = Hn + εnGn + o(εn),

where Hεn and Gεn are defined as

Hn :=

ˆ
Ω

Aεn(x)

(
∇umin

0 (x) +

N∑
i=1

∇y(ψ
εn
i (x))∂iu

min
0 (x)

)
·

·

(
∇umin

0 (x) +

n∑
i=1

∇y(ψ
εn
i (x))∂iu

min
0 (x)

)
dx,

and

Gn := 2

ˆ
Ω

Aεn(x)

(
∇umin

0 (x) +

N∑
i=1

∇y(ψ
εn
i (x))∂iu

min
0 (x)

)
·
( N∑

i=1

ψεn
i (x)∇(∂iu

min
0 (x))

+

N∑
r,s=1

∇y(χ
εn
rs (x))∂

2
rsu

min
0 (x)−

N∑
l=1

∇y(ψ
εn
l (x))∂lũ1(x)

)
dx,

respectively.

Step 2.1: asymptotic behavior of Hn. Using Proposition 4.3, and recalling that we are assuming
the barycenter of Y to be at the origin, we get thatˆ

Ω

Aεn(x)∇umin
0 (x) · ∇umin

0 (x) dx

=

N∑
i,j=1

ˆ
Ω

aεnij (x)∂iu
min
0 (x)∂ju

min
0 (x) dx

=

N∑
i,j=1

⟨aij⟩Y
ˆ
Ω

∂iu
min
0 (x)∂ju

min
0 (x) dx

+ εn

N∑
i,j=1

ˆ
Ω

∇(∂iu
min
0 ∂ju

min
0 )(x) dx · ⟨yaij⟩Y + o(εn). (6.3)

Moreover,
ˆ
Ω

Aεn(x)

(
N∑
i=1

∇y(ψ
εn
i (x))∂iu

min
0 (x)

)
· ∇umin

0 (x) dx
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=

N∑
i,j,s=1

ˆ
Ω

aεnjs (x)∂ys
ψεn
i (x)∂iu

min
0 (x)∂ju

min
0 (x) dx

=

N∑
i,j,s=1

⟨ajs∂ys
ψi⟩Y

ˆ
Ω

∂iu
min
0 (x)∂ju

min
0 (x) dx

+ εn

N∑
i,j,s=1

ˆ
Ω

∇(∂iu
min
0 ∂ju

min
0 )(x) dx · ⟨yajs∂ys

ψi⟩Y + o(εn). (6.4)

Finally,

ˆ
Ω

Aεn(x)

(
N∑
i=1

∇y(ψ
εn
i (x))∂iu

min
0 (x)

)
·

 N∑
j=1

∇y(ψ
εn
j (x))∂ju

min
0 (x)

 dx

=

N∑
i,j,r,s=1

ˆ
Ω

aεnrs (x)∂ysψ
εn
i (x)∂iu

min
0 (x)∂yrψ

εn
j (x)∂ju

min
0 (x) dx

=

N∑
i,j,r,s=1

⟨ars∂ysψi∂yrψj⟩Y
ˆ
Ω

∂iu
min
0 (x)∂ju

min
0 (x) dx

+ εn

N∑
i,j,r,s=1

ˆ
Ω

∇(∂iu
min
0 ∂ju

min
0 )(x) dx · ⟨yars∂ysψi∂yrψj⟩Y + o(εn). (6.5)

Therefore, from (6.3), (6.4), (6.5), and the definition of Ahom (see (2.1)) we obtain that

Hn =

ˆ
Ω

Ahom∇umin
0 (x) · ∇umin

0 (x) dx

+ εn

N∑
i,j=1

ˆ
Ω

∇(∂iu
min
0 ∂ju

min
0 )(x) dx · ⟨y [aij + 2Aej · ∇ψi +A∇ψi · ∇ψj ]⟩Y + o(εn). (6.6)

Step 2.2: limit of Gn. Therefore,

lim
n→∞

Fn(u
min
n )− F 0

hom(u
min
0 )

εn
= lim inf

n→∞
Gεn(u

min
n )

To make the computations more clear, we split Gn(u
min
n ) := Gn(u

min
0 , ũ1) as follows

Gn(u
min
0 , ũ1) := G1

n(u
min
0 , ũ1) +G2

n(u
min
0 , ũ1) +G3

n(u
min
0 , ũ1) +G4

n(u
min
0 , ũ1)

+G5
n(u

min
0 , ũ1) +G6

n(u
min
0 , ũ1),

where the functionals Gi
n(u

min
0 , ũ1), for i = 1, . . . , 6 are given by

G1
n(u

min
0 , ũ1) := 2

ˆ
Ω

Aεn(x)∇umin
0 (x) ·

N∑
i=1

ψεn
i (x)∇(∂iu

min
0 (x)) dx,

G2
n(u

min
0 , ũ1) := 2

ˆ
Ω

Aεn(x)∇umin
0 (x) ·

N∑
r,s=1

∇y(χ
εn
rs (x))∂

2
rsu

min
0 (x) dx,

G3
n(u

min
0 , ũ1) := −2

ˆ
Ω

Aεn(x)∇umin
0 (x) ·

N∑
l=1

∇y(ψ
εn
l (x))∂lũ1(x) dx,
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G4
n(u

min
0 , ũ1) := 2

ˆ
Ω

Aεn(x)

N∑
j=1

∇y(ψ
εn
j (x))∂ju

min
0 (x) ·

N∑
i=1

ψεn
i (x)∇(∂iu

min
0 ) dx,

G5
n(u

min
0 , ũ1) := 2

ˆ
Ω

Aεn(x)

N∑
j=1

∇y(ψ
εn
j (x))∂ju

min
0 (x) ·

N∑
r,s=1

∇y(χ
εn
rs (x))∂

2
rsu

min
0 (x) dx,

G6
n(u

min
0 , ũ1) := −2

ˆ
Ω

Aεn(x)

N∑
j=1

∇(ψεn
j (x))∂ju

min
0 (x) ·

N∑
l=1

∇y(ψ
εn
l (x))∂lũ1(x) dx.

Now, we separately compute the limit as n → ∞ of each functionals Gi
n. Using the Riemann-Lebesgue

lemma (see Lemma 4.1), we get

lim
n→∞

G1
n(u

min
0 , ũ1) = 2 lim

n→∞

N∑
i=1

ˆ
Ω

ψεn
i (x)Aεn(x)∇umin

0 (x) · ∂i∇umin
0 (x) dx

= 2

N∑
i=1

ˆ
Ω

⟨ψiA⟩Y ∇umin
0 (x) · ∂i∇umin

0 (x) dx (6.7)

Regarding the second functional G2
n, we obtain that

lim
n→∞

G2
n(u

min
0 , ũ1) = 2 lim

n→∞

N∑
r,s=1

ˆ
Ω

∇umin
0 (x) ·Aεn(x)∇y(χ

εn
rs (x))∂

2
rsu

min
0 (x) dx

= 2 lim
n→∞

N∑
r,s=1

N∑
j=1

ˆ
Ω

∂ju
min
0 (x) (∇y(χ

εn
rs (x)) ·Aεn(x)ej) ∂

2
rsu

min
0 (x) dx

= 2

N∑
r,s=1

N∑
j=1

ˆ
Ω

∂ju
min
0 (x)⟨Aej · ∇χrs⟩Y ∂2rsumin

0 (x) dx. (6.8)

Here, we have exploited the symmetry of the matrix A to deduce that

∇umin
0 (x) ·Aεn(x)∇y(χ

εn
rs (x)) =

N∑
j=1

∂ju
min
0 (x) (Aεn(x)∇yχ

εn
rs (x))j

=

N∑
j=1

∂ju
min
0 (x) (Aεn(x)∇yχ

εn
rs (x) · ej)

=

N∑
j=1

∂ju
min
0 (x) (∇yχ

εn
rs (x) ·Aεn(x)ej) .

Similarly for G3
n, it follows that

lim
n→∞

G3
n(u

min
0 , ũ1) = −2 lim

n→∞

N∑
l=1

ˆ
Ω

∇umin
0 (x) ·Aεn(x)∇y(ψ

εn
l (x))∂lũ1(x) dx

= −2 lim
n→∞

N∑
l=1

N∑
j=1

ˆ
Ω

∂ju
min
0 (x) · [Aεn(x)ej · ∇y(ψ

εn
l (x))]∂lũ1(x) dx

= −2

N∑
l=1

N∑
j=1

ˆ
Ω

∂ju
min
0 (x)⟨Aej · ∇yψl⟩Y ∂lũ1(x) dx. (6.9)
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The limit G4
n(u

min
0 , ũ1) as n→ ∞ reads as follows

lim
n→∞

G4
n(u

min
0 , ũ1) = 2 lim

n→∞

N∑
j=1

N∑
i=1

ˆ
Ω

∂ju
min
0 (x)ψεn

i (x)Aεn(x)∇y(ψ
εn
j (x)) · ∂i(∇umin

0 (x)) dx

= 2

N∑
j=1

N∑
i=1

ˆ
Ω

∂ju
min
0 (x)⟨ψiA∇yψj⟩Y · ∂i(∇umin

0 (x)) dx. (6.10)

For G5
n, it follows that

lim
n→∞

G5
n(u

min
0 , ũ1) = 2 lim

n→∞

N∑
j=1

N∑
r,s=1

ˆ
Ω

∂ju
min
0 (x)Aεn(x)∇y(ψ

εn
j (x)) · ∇y(χ

εn
rs (x))∂

2
rsu

min
0 (x) dx

= 2

N∑
j=1

N∑
r,s=1

ˆ
Ω

∂ju
min
0 (x)⟨A∇yψj · ∇yχrs⟩Y ∂2rsumin

0 (x) dx.

The variational formulation of the problem of the corrector ψj (see (3.7)) with χrs as a test function
yields

⟨A∇y(ψj) · ∇y(χrs)⟩Y =

ˆ
Y

A(y)∇yψj(y) · ∇yχrs(y) dy = −
ˆ
Y

A(y)ej · ∇yχrs(y) dy = −⟨Aej · ∇yχrs⟩Y .

This implies that

lim
n→∞

G5
n(u

min
0 , ũ1) = −2

N∑
j=1

N∑
r,s=1

ˆ
Ω

∂ju
min
0 (x)⟨Aej · ∇yχrs⟩Y ∂2rsumin

0 (x) dx. (6.11)

Finally, the limit of of G6
n as n→ ∞ is

lim
n→∞

G6
n(u

min
0 , ũ1) = −2 lim

n→∞

N∑
j=1

N∑
l=1

ˆ
Ω

∂ju
min
0 (x)Aεn(x)∇y(ψ

εn
j (x)) · ∇y(ψ

εn
l (x))∂lũ1(x) dx

= −2

N∑
j=1

N∑
l=1

ˆ
Ω

∂ju
min
0 (x)⟨A∇yψj · ∇yψl⟩Y ∂lũ1(x) dx.

Using again the variational formulation of the problem of the corrector ψj (see (3.7)), choosing as test
function ψl, yields to

⟨A∇yψj · ∇yψl⟩Y = −⟨Aej · ∇yψl⟩Y .
Thanks to this equality, it follows that

lim
n→∞

G6
n(u

min
0 , ũ1) = 2

N∑
j=1

N∑
l=1

ˆ
Ω

∂ju
min
0 (x)⟨Aej · ∇yψl⟩Y ∂lũ1(x) dx. (6.12)

Gathering formulas (6.7)-(6.12) and noting that (6.8) and (6.11) as well as (6.9) and (6.12) cancel out,
we deduce that

lim
n→∞

Gn(u
min
0 , ũ1) = lim

n→∞
G1

n(u
min
0 , ũ1) + lim

n→∞
G4

n(u
min
0 , ũ1)

= 2

N∑
i=1

ˆ
Ω

⟨ψiA⟩Y ∇umin
0 (x) · ∂i(umin

0 (x)) dx+ 2

N∑
j=1

N∑
i=1

ˆ
Ω

∂ju
min
0 (x)⟨ψiA∇yψj⟩Y · ∂i(∇umin

0 (x)) dx.

(6.13)

Step 3: limit of I3n. A direct computation shows that

lim
n→∞

1

εn

ˆ
Ω

f(x)(u(2)n (x)− umin
0 (x)) dx = lim

n→∞

N∑
j=1

ˆ
Ω

f(x)ψεn
j (x)∂ju

min
0 (x) dx
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=

N∑
j=1

⟨ψj⟩Y
ˆ
Ω

f(x)∂ju
min
0 (x) dx. (6.14)

□

7. The limsup inequality for Theorem 2.7

In this section, we prove the upper bound of Theorem 2.7 (ii).

Proposition 7.1. Assume Assumptions (H1)-(H5) to hold. Then, there exists a sequence {un}n ⊂ H1
0 (Ω)

converging to umin
0 weakly in H1(Ω) such that

lim
n→∞

F 1
n(un) = F 1

hom(u
min
0 ).

Proof. We define, for n ∈ N,

un(x) := umin
0 (x) + ε

N∑
i=1

ψεn
i (x)∂iu

min
0 (x).

The weak convergence of {un}n to umin
0 is a direct computation. Moreover, the desired convergence of

the energy follows from (6.7), (6.9), (6.10), and (6.14). □

8. Proof of Theorem 2.12

This section is devoted to the proof of Theorem 2.12. We first illustrate the idea of the proof by
considering the special case

V (x, p) = a(x)|p|2,
where a : RN → R is an Y -periodic function such that 0 < c1 ≤ a(c) ≤ c2 < +∞ for all x ∈ Y . Then, it
holds that

Vhom(p) = min

{ˆ
Y

a(y)|p+ φ(y)|2 dy : φ ∈ L2(Y ),

ˆ
Y

φ(y) dy = 0

}
.

This mininization problem admits a solution, that we can compute explicitly. Indeed, the Euler-Lagrange
equation gives the existence of a constant c(p) ∈ R such that

2a(y)(p+ φ(y)) = c(p),

for almost every y ∈ Y . Recalling that a(y) > 0, we obtain

φ(y) =
c(p)

2a(y)
− p.

Moreover, the constant c(p) can be computed by the zero average requirement for φ:

c(p) = 2p

(ˆ
Y

1

a(y)
dy

)−1

.

Thus,

Vhom(p) = p2
(ˆ

Y

1

a(y)
dy

)−1

,

which yields

Ghom(v) =

ˆ
Ω

v2(x) dx

(ˆ
Y

1

a(y)
dy

)−1

,

for all v ∈ L2(Ω).

Fix m ∈ R. We now consider the solution vmin
0 ∈ L2(Ω) to the minimization problem

min

{
Ghom(v) : v ∈ L2(Ω),

ˆ
Ω

v(x) dx = m

}
.
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The Euler-Lagrange equation gives the existence of a constant c ∈ R such that

2vmin
0 (x)

(ˆ
Y

1

a(y)
dy

)−1

= c,

for almost every x ∈ Ω. Thus, vmin
0 is constant. The mass constraint gives that

vmin
0 (x) =

m

|Ω|
,

for all x ∈ Ω, which yields

Ghom(v
min
0 ) =

m2

|Ω|

(ˆ
Y

1

a(y)
dy

)−1

. (8.1)

In a similar way, we can obtain the solution vmin
n to the minimization problem

min

{
Gεn(v) : v ∈ L2(Ω),

ˆ
Ω

v(x) dx = m

}
.

This gives

vmin
n (x) =

cn
2aεn (x)

,

where

cn := 2m

(ˆ
Ω

1

aεn (x)
dx

)−1

.

Thus,

Gn(v
min
n ) = m2

(ˆ
Ω

1

aεn (x)
dx

)−1

. (8.2)

Note that thanks to our assumptions on Ω and εn, we getˆ
Ω

1

aεn (x)
dx = |Ω|

ˆ
Y

1

a(y)
dy.

Therefore, from (8.1) and (8.2), we conclude that

Gn(v
min
n ) = Ghom(v

min
0 ),

for all n ∈ N \ {0}, as desired.

In the general case, we use a similar argument as the one implemented above. We first consider the
homogenized energy density

Vhom(p) = min

{ˆ
Y

V (y, p+ φ(y)) dy : φ ∈ L2(Y ),

ˆ
Y

φ(y) dy = 0

}
.

Since we are assuming p 7→ V (y, p) to be strictly convex, for each y ∈ Y we denote by ∂pV
−1(y) : R → R

the inverse of the map ∂pV (y, ·), and we use the notation v 7→ ∂−1
p V (y)[v] to avoid the use of too many

round parenthesis. We get that the optimal perturbation φ satisfies

φ(y) = ∂−1
p V (y)[c(p)]− p,

for some c(p) ∈ R, which can be computed by using the zero average constrained

p =

ˆ
Y

∂−1
p V (y)[c(p)] dy.

If we now consider the solution vmin
0 ∈ L2(Ω) to the minimization problem

min

{
Ghom(v) : v ∈ L2(Ω),

ˆ
Ω

v(x) dx = m

}
,

we get that

vmin
0 =

m

|Ω|
.
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In particular,

Ghom(v
min
0 ) = |Ω|

ˆ
Y

V

(
y, ∂−1

p V (y)

[
c

(
m

|Ω|

)])
dy.

If we now consider the solution vmin
n to the minimization problem

min

{
Gn(v) : v ∈ L2(Ω),

ˆ
Ω

v(x) dx = m

}
,

we get that

∂pV

(
x

εn
, vmin

n (x)

)
= cn,

where, using the mass constraint,

m =

ˆ
Ω

∂−1
p V

(
x

εn

)
[cn] dx = |Ω|

ˆ
Y

∂−1
p V (y)[cn] dy.

This gives that

Gn(v
min
n ) =

ˆ
Ω

V

(
x

εn
, ∂−1

p V

(
x

εn

)
[cn]

)
dx = |Ω|

ˆ
Y

V
(
y, ∂−1

p V (y) [cn]
)
dy.

It is possible the choose

cn =
m

|Ω|
,

which gives Gn(v
min
n ) = Ghom(v

min
0 ) for all n ∈ N \ {0} as desired.
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